
Multicriteria Optimization
Some continuous and discrete dynamics

Guillaume Garrigos

Institut de Mathématiques et de Modélisation de Montpellier
Universidad Tecnica Federico Santa Maria

Sestri-Levante: Franco/Italian workshop
8-12 September 2014

Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 1/35



Context

H is an Hilbert space,
fi : H → R are Lipschitz continuous on bounded sets.
K ⊂ H is a closed convex non empty set of constraints,
One of the objective functions is bounded from below.
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One approach, the scalarization method :

chose 0 ≤ θi ≤ 1,
q∑

i=1
θi = 1, and minimize

q∑
i=1

θi fi .
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fi : H → R are Lipschitz continuous on bounded sets.
K ⊂ H is a closed convex non empty set of constraints,
One of the objective functions is bounded from below.

One approach, the scalarization method :

chose 0 ≤ θi ≤ 1,
q∑

i=1
θi = 1, and minimize

q∑
i=1

θi fi .

We are looking for the simultaneous minimization of the fi ’s.
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Nonsmooth analysis tools

Directional derivative (of Clarke)

df (x ; d) := lim sup
t↓0

x′→x

f (x ′ + td)− f (x ′)
t

.

Subdifferential (of Clarke)

∂f (x) := {p ∈ H | 〈p, d〉 ≤ df (x ; d) ∀d ∈ H}.

Remark

If f is of class C 1, then
∂f (x) = {∇f (x)} and df (x ; d) = 〈∇f (x), d〉.
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Nonsmooth analysis tools

Tangent and normal cones

TK (x) := cl {d ∈ H | ∃ε > 0, ∀t ∈]0, ε[, x + td ∈ K}.

NK (x) := {p ∈ H | 〈p, d〉 ≤ 0 ∀d ∈ TK (x)}.

K

TK (x)
NK (x)

x
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Multicriteria analysis

Descent direction
We say that d ∈ H is a descent direction at x if dfi (x ; d) < 0 holds
for all i = 1..q.
We say that it is an admissible descent direction if moreover
d ∈ TK (x).
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Example

b
x

∇f1(x)
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Example

b
x

∇f1(x)∇f2(x)
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Multicriteria analysis

Armijo direction
We say that a descent direction d ∈ H is an Armijo direction if
∃ε > 0 s.t. for all t ∈]0, ε[ :

∀i , fi (x + td) < fi (x) +
t
2
dfi (x ; d).

We say that it is an admissible Armijo direction if moreover
x + td ∈ K .
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Multicriteria analysis

Pareto equilibrium(s)

We say that x ∈ K is a Pareto if there is no y ∈ K such that
∀i fi (y) ≤ fi (x) and ∃I fI (y) < fI (x).
We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t.
∀i fi (y) < fi (x).
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Multicriteria analysis

Pareto equilibrium(s)

We say that x ∈ K is a Pareto if there is no y ∈ K such that
∀i fi (y) ≤ fi (x) and ∃I fI (y) < fI (x).
We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t.
∀i fi (y) < fi (x).
We say that x ∈ K is a critical Pareto if
0 ∈ NK (x) + Conv{∂fi (x)}.
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Example

b
x

Conv{∇fi (x)}
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Multicriteria analysis

Pareto equilibrium(s)

We say that x ∈ K is a Pareto if there is no y ∈ K such that
∀i fi (y) ≤ fi (x) and ∃I fI (y) < fI (x).
We say that x ∈ K is a weak Pareto if there is no y ∈ K s.t.
∀i fi (y) < fi (x).
We say that x ∈ K is a critical Pareto if
0 ∈ NK (x) + Conv{∂fi (x)}.

Properties
Pareto ⇒ weak Pareto ⇒ critical Pareto.
If the fi are convex, then weak Pareto ⇔ critical Pareto.
If the fi are strictly convex, then the 3 notions both coincide.
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Link between descent direction and Pareto equilibrium

Proposition
The following statements are equivalent :

x is a critical Pareto point,
There is no admissible descent direction at x ,
There is no admissible Armijo direction at x .
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Objectif

We will consider
1 a continuous dynamic u̇(t) = s(u(t)), where s : K → H verify

s(u) = 0 if u is a critical Pareto point,
s(u) is an admissible descent direction else.

2 an algorithm un+1 = un + tndn where dn is an admissible
Armijo direction.
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The multiobjective steepest descent direction

Definition
Given x ∈ K , the multiobjective steepest descent direction is

s(x) := − (NK (x) + Conv{∂fi (x)})0 .
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Example

b
x

−s(x) Conv{∇fi (x)}b
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The multiobjective steepest descent direction

Definition
Given x ∈ K , the multiobjective steepest descent direction is

s(x) := − (NK (x) + Conv{∂fi (x)})0 .

Example

If q = 1, then s(x) = proj TK (x)(−∇f (x)).

Property

s(x) is an admissible descent direction at x , whenever s(x) 6= 0.
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b
x
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The multiobjective steepest descent direction

Why s(x) is called the steepest descent ?

Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 23/35



The multiobjective steepest descent direction

Why s(x) is called the steepest descent ?
Recall that (one objective function, no constraint) :

−∇f (x)
‖∇f (x)‖

= argmin
‖d‖≤1

df (x , d).
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The multiobjective steepest descent direction

Why s(x) is called the steepest descent ?
Recall that (one objective function, no constraint) :

−∇f (x)
‖∇f (x)‖

= argmin
‖d‖≤1

df (x , d).

The multiobjective steepest descent direction generalizes this fact :

Theorem (Attouch, Garrigos, Goudou, 2014)

s(x)
‖s(x)‖

= argmin
‖d‖≤1,d∈TK (x)

max
i

dfi (x , d).
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A continuous dynamic

The Multi-Objective Gradient dynamic :
(MOG) u̇(t) = s(u(t)) i.e u̇(t) + (NK (u(t)) + Conv{∂fi (u(t))})0 = 0
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A continuous dynamic : example 1

(MOG) u̇(t) = s(u(t)) i.e u̇(t) + (NK (u(t)) + Conv{∂fi (u(t))})0 = 0

f1(x) = ‖x − a‖2 and f2(x) = ‖x − b‖2

0 ab
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A continuous dynamic : example 2

(MOG) u̇(t) = s(u(t)) i.e u̇(t) + (NK (u(t)) + Conv{∂fi (u(t))})0 = 0

f1(x) = 1
2‖x‖

2 and f2(x) = 〈a, x〉

0
(1, 0)
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A continuous dynamic : Existence and uniqueness

(MOG) u̇(t) = s(u(t)) i.e u̇(t) + (NK (u(t)) + Conv{∂fi (u(t))})0 = 0

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that H is finite-dimentional, and that the functions are
convex and bounded from below. Then for any u0 ∈ K , there exists
a strong solution u : [0,+∞[→ K of (MOG), such that u(0) = u0.

Strong solution essentially means an absolutely continuous
trajectory u satisfying (MOG) for a.e. t > 0.
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A continuous dynamic : Existence and uniqueness

(MOG) u̇(t) = s(u(t)) i.e u̇(t) + (NK (u(t)) + Conv{∂fi (u(t))})0 = 0

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that H is finite-dimentional, and that the functions are
convex and bounded from below. Then for any u0 ∈ K , there exists
a strong solution u : [0,+∞[→ K of (MOG), such that u(0) = u0.

The proof cannot rely on Cauchy-Lipschitz because of lack of
Lipschitz regularity.
→ Use Morau-Yoshida’s regularization onto the fi ’s and the
indicator function.
→ Use Peano’s existence theorem on the regularized system : it
asks only continuity but do not guarantee uniqueness.
→ Pass to the limit. Hard.
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About uniqueness

The problem of uniqueness is still open.
Can we find hypotheses ensuring Lipschitz continuity of s(u) ?

Local Lipschitz property

Suppose K = H, and that the functions are of class C 1,1.
The vector field s is Lipschitz continuous at u if :

q = 2, and ∇f1(u) 6= ∇f2(u).
The vectors ∇fi (u) are linearly independent.
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A continuous dynamic : example 2
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A continuous dynamic : Qualitative behaviour

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that the objective functions are lower regular (convex, or
continuously differentiable ...). Then for all i = 1..q, the function
t 7→ fi (u(t)) is decreasing.

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that the objective functions are quasi-convex.
Then any bounded trajectory is weakly convergent.
The limit point is a weak Pareto if the functions are convex.
The limit point is a critical Pareto if the functions are C 1 or
convex, and under compact assumption on u.

We recover classic results by taking q = 1.
Can we have strong convergence under stronger assumptions ?
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Continuous case : What (MOG) is not

A descent method associated to some scalarization
q∑

i=1
θi fi . In

(MOG) the θi are chosen and modified automatically along the
time. And ALL the functions decrease.

A descent method associated to max fi .

Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 33/35



Continuous case : What (MOG) is not

A descent method associated to some scalarization
q∑

i=1
θi fi . In

(MOG) the θi are chosen and modified automatically along the
time. And ALL the functions decrease.
A descent method associated to max fi .

Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 33/35



A continuous dynamic : example 1

(MOG) u̇(t) = s(u(t)) i.e u̇(t) + (NK (u(t)) + Conv{∂fi (u(t))})0 = 0

f1(x) = ‖x − a‖2 and f2(x) = ‖x − b‖2

0 ab

Multicriteria optimization - Guillaume Garrigos - Franco/Italian workshop 34/35



Bibliography

The Multi-Objective Gradient dynamic
A Continuous Gradient-like Dynamical Approach to Pareto-Optimization in Hilbert Spaces. Attouch, Goudou, 2014

A Dynamic Gradient Approach to Pareto Optimization with Nonsmooth (...). Attouch, Garrigos, Goudou, Submitted.

Multi-Objective Gradient algorithm
Steepest descent methods for multicriteria optimization. Fliege, Svaiter, 2000.

A steepest descent method for vector optimization. Drummond, Svaiter, 2005.

Newton’s method
Newton’s Method for Multiobjective Optimization. Fliege, Drummond, Svaiter, 2009.

A quadratically convergent Newton method for vector optimization. Drummond, Raupp, Svaiter, 2014.

Quasi-Newton’s method for multiobjective optimization. Povalej, 2014.

Proximal method
Proximal Methods in Vector Optimization. Bonnel, Iusem, Svaiter, 2005.



Bibliography

The Multi-Objective Gradient dynamic
A Continuous Gradient-like Dynamical Approach to Pareto-Optimization in Hilbert Spaces. Attouch, Goudou, 2014

A Dynamic Gradient Approach to Pareto Optimization with Nonsmooth (...). Attouch, Garrigos, Goudou, Submitted.

Multi-Objective Gradient algorithm
Steepest descent methods for multicriteria optimization. Fliege, Svaiter, 2000.

A steepest descent method for vector optimization. Drummond, Svaiter, 2005.

Newton’s method
Newton’s Method for Multiobjective Optimization. Fliege, Drummond, Svaiter, 2009.

A quadratically convergent Newton method for vector optimization. Drummond, Raupp, Svaiter, 2014.

Quasi-Newton’s method for multiobjective optimization. Povalej, 2014.

Proximal method
Proximal Methods in Vector Optimization. Bonnel, Iusem, Svaiter, 2005.

Thank you for your attention !
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