Multicriteria Optimization Some continuous and discrete dynamics

Guillaume Garrigos

Institut de Mathématiques et de Modélisation de Montpellier Universidad Tecnica Federico Santa Maria

> Sestri-Levante: Franco/Italian workshop 8-12 September 2014

- H is an Hilbert space,
- $f_i: H \to \mathbb{R}$ are Lipschitz continuous on bounded sets.
- $K \subset H$ is a closed convex non empty set of constraints,
- One of the objective functions is bounded from below.

Context

- *H* is an Hilbert space,
- $f_i: H \to \mathbb{R}$ are Lipschitz continuous on bounded sets.
- $K \subset H$ is a closed convex non empty set of constraints,
- One of the objective functions is bounded from below.

One approach, the scalarization method :
chose
$$0 \le \theta_i \le 1$$
, $\sum_{i=1}^{q} \theta_i = 1$, and minimize $\sum_{i=1}^{q} \theta_i f_i$.

Context

- H is an Hilbert space,
- $f_i: H \to \mathbb{R}$ are Lipschitz continuous on bounded sets.
- $K \subset H$ is a closed convex non empty set of constraints,
- One of the objective functions is bounded from below.

One approach, the scalarization method :
chose
$$0 \le \theta_i \le 1$$
, $\sum_{i=1}^{q} \theta_i = 1$, and minimize $\sum_{i=1}^{q} \theta_i f_i$.

We are looking for the **simultaneous** minimization of the f_i 's.

2 Continuous steepest descent dynamic

1 Multicriteria analysis

2 Continuous steepest descent dynamic

Directional derivative (of Clarke)

$$df(x; d) := \limsup_{\substack{t \downarrow 0 \\ x' \to x}} \frac{f(x' + td) - f(x')}{t}.$$

Subdifferential (of Clarke)

$$\partial f(x) := \{ p \in H \mid \langle p, d \rangle \leq df(x; d) \; \forall d \in H \}.$$

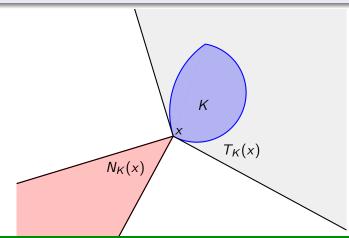
Remark

If f is of class C^1 , then $\partial f(x) = \{\nabla f(x)\}$ and $df(x; d) = \langle \nabla f(x), d \rangle$.

Tangent and normal cones

$$T_{\mathcal{K}}(x) := cl \ \{d \in H \mid \exists \varepsilon > 0, \forall t \in]0, \varepsilon[, \ x + td \in \mathcal{K}\}.$$

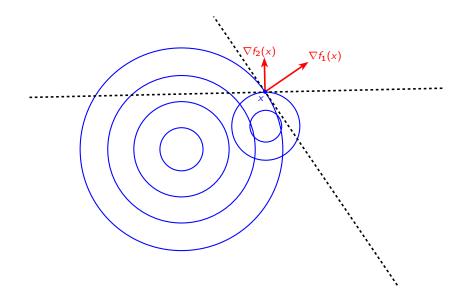
$$N_{\mathcal{K}}(x) := \{ p \in H \mid \langle p, d \rangle \leq 0 \ \forall d \in T_{\mathcal{K}}(x) \}.$$



Descent direction

We say that $d \in H$ is a *descent direction* at x if $df_i(x; d) < 0$ holds for all i = 1..q. We say that it is an *admissible* descent direction if moreover $d \in T_K(x)$.





Armijo direction

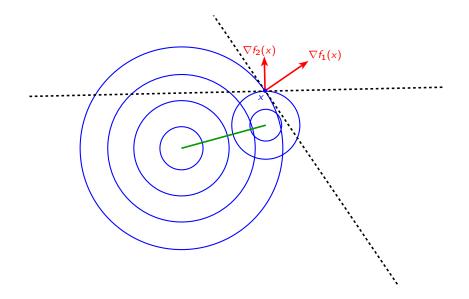
We say that a descent direction $d \in H$ is an Armijo direction if $\exists \varepsilon > 0$ s.t. for all $t \in]0, \varepsilon[$:

$$\forall i, f_i(x+td) < f_i(x) + \frac{t}{2}df_i(x; d).$$

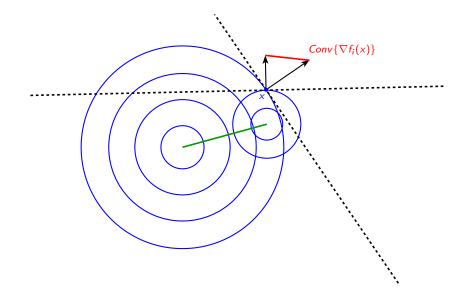
We say that it is an *admissible* Armijo direction if moreover $x + td \in K$.

• We say that $x \in K$ is a Pareto if there is no $y \in K$ such that $\forall i \ f_i(y) \leq f_i(x)$ and $\exists I \ f_l(y) < f_l(x)$.

- We say that $x \in K$ is a Pareto if there is no $y \in K$ such that $\forall i \ f_i(y) \leq f_i(x)$ and $\exists I \ f_l(y) < f_l(x)$.
- We say that $x \in K$ is a weak Pareto if there is no $y \in K$ s.t. $\forall i \ f_i(y) < f_i(x)$.



- We say that $x \in K$ is a Pareto if there is no $y \in K$ such that $\forall i \ f_i(y) \leq f_i(x)$ and $\exists I \ f_l(y) < f_l(x)$.
- We say that $x \in K$ is a weak Pareto if there is no $y \in K$ s.t. $\forall i \ f_i(y) < f_i(x)$.
- We say that $x \in K$ is a critical Pareto if $0 \in N_K(x) + Conv\{\partial f_i(x)\}.$



- We say that $x \in K$ is a Pareto if there is no $y \in K$ such that $\forall i \ f_i(y) \leq f_i(x)$ and $\exists I \ f_l(y) < f_l(x)$.
- We say that $x \in K$ is a weak Pareto if there is no $y \in K$ s.t. $\forall i \ f_i(y) < f_i(x)$.
- We say that $x \in K$ is a critical Pareto if $0 \in N_K(x) + Conv\{\partial f_i(x)\}.$

- We say that $x \in K$ is a Pareto if there is no $y \in K$ such that $\forall i \ f_i(y) \leq f_i(x)$ and $\exists I \ f_l(y) < f_l(x)$.
- We say that $x \in K$ is a weak Pareto if there is no $y \in K$ s.t. $\forall i \ f_i(y) < f_i(x)$.
- We say that $x \in K$ is a critical Pareto if $0 \in N_K(x) + Conv\{\partial f_i(x)\}.$

Properties

- Pareto \Rightarrow weak Pareto \Rightarrow critical Pareto.
- If the f_i are convex, then weak Pareto \Leftrightarrow critical Pareto.
- If the f_i are strictly convex, then the 3 notions both coincide.

Proposition

The following statements are equivalent :

- x is a critical Pareto point,
- There is no admissible descent direction at x,
- There is no admissible Armijo direction at x.

We will consider

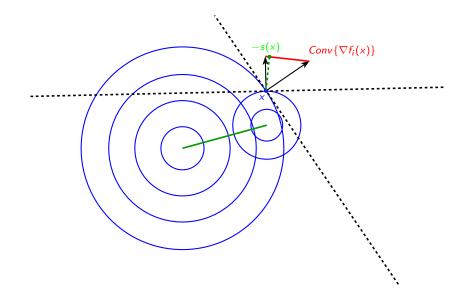
- **(**) a continuous dynamic $\dot{u}(t) = s(u(t))$, where $s : K \to H$ verify
 - s(u) = 0 if u is a critical Pareto point,
 - s(u) is an admissible descent direction else.
- ② an algorithm $u_{n+1} = u_n + t_n d_n$ where d_n is an admissible Armijo direction.

1 Multicriteria analysis

2 Continuous steepest descent dynamic

Given $x \in K$, the multiobjective steepest descent direction is

$$s(x):=-\left(\mathsf{N}_{\mathcal{K}}(x)+\mathsf{Conv}\{\partial f_i(x)\}
ight)^0$$
 .



Given $x \in K$, the multiobjective steepest descent direction is

$$s(x) := -\left(N_{\mathcal{K}}(x) + Conv\{\partial f_i(x)\}\right)^0$$

Given $x \in K$, the multiobjective steepest descent direction is

$$s(x) := -(N_{\mathcal{K}}(x) + Conv\{\partial f_i(x)\})^0.$$

Obviously, x is a Pareto critical iff s(x) = 0.

Given $x \in K$, the multiobjective steepest descent direction is

$$s(x) := - \left(N_{\mathcal{K}}(x) + \operatorname{Conv} \{ \partial f_i(x) \} \right)^0.$$

Obviously, x is a Pareto critical iff s(x) = 0.

In a sense, s(x) selects itself a different convex combination of the functions at each x.

Given $x \in K$, the multiobjective steepest descent direction is

$$s(x) := -(N_{\mathcal{K}}(x) + Conv\{\partial f_i(x)\})^0.$$

Obviously, x is a Pareto critical iff s(x) = 0.

In a sense, s(x) selects itself a different convex combination of the functions at each x.

Example

If
$$q = 1$$
, then $s(x) = \operatorname{proj}_{T_{\kappa}(x)}(-\nabla f(x))$.

Given $x \in K$, the multiobjective steepest descent direction is

$$s(x) := - \left(N_{\mathcal{K}}(x) + \operatorname{Conv}\left\{\partial f_i(x)\right\}\right)^0.$$

Obviously, x is a Pareto critical iff s(x) = 0.

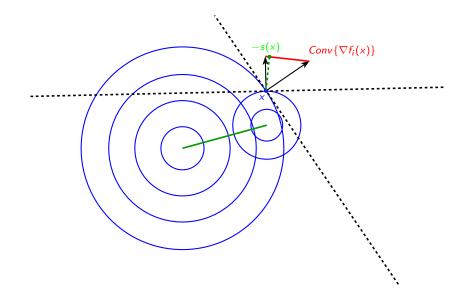
In a sense, s(x) selects itself a different convex combination of the functions at each x.

Example

If
$$q = 1$$
, then $s(x) = \operatorname{proj}_{T_{\mathcal{K}}(x)}(-\nabla f(x))$.

Property

s(x) is an admissible descent direction at x, whenever $s(x) \neq 0$.



Why s(x) is called the **steepest** descent?

Why s(x) is called the **steepest** descent? Recall that (one objective function, no constraint) :

$$\frac{-\nabla f(x)}{\|\nabla f(x)\|} = \underset{\|d\| \le 1}{\operatorname{argmin}} df(x, d).$$

Why s(x) is called the **steepest** descent? Recall that (one objective function, no constraint) :

$$\frac{-\nabla f(x)}{\|\nabla f(x)\|} = \underset{\|d\| \leq 1}{\operatorname{argmin}} df(x, d).$$

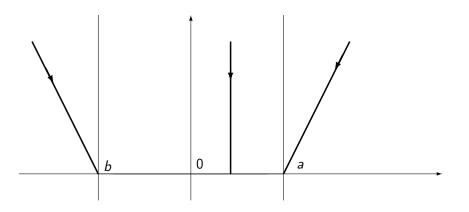
The multiobjective steepest descent direction generalizes this fact :

A continuous dynamic

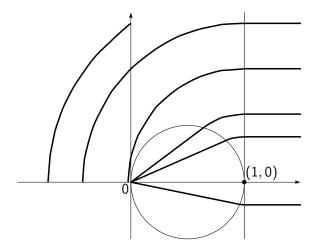
The Multi-Objective Gradient dynamic : (MOG) $\dot{u}(t) = s(u(t))$ i.e $\dot{u}(t) + (N_K(u(t)) + Conv\{\partial f_i(u(t))\})^0 = 0$

A continuous dynamic : example 1

(MOG)
$$\dot{u}(t) = s(u(t))$$
 i.e $\dot{u}(t) + (N_{K}(u(t)) + Conv\{\partial f_{i}(u(t))\})^{0} = 0$
 $f_{1}(x) = ||x - a||^{2}$ and $f_{2}(x) = ||x - b||^{2}$



(MOG) $\dot{u}(t) = s(u(t))$ i.e $\dot{u}(t) + (N_{\mathcal{K}}(u(t)) + Conv\{\partial f_i(u(t))\})^0 = 0$ $f_1(x) = \frac{1}{2} ||x||^2$ and $f_2(x) = \langle a, x \rangle$



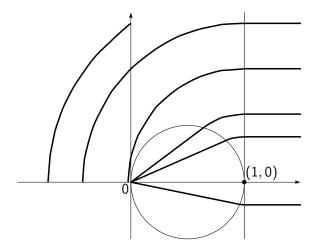
(MOG) $\dot{u}(t) = s(u(t))$ i.e $\dot{u}(t) + (N_{\mathcal{K}}(u(t)) + Conv\{\partial f_i(u(t))\})^0 = 0$

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that H is finite-dimentional, and that the functions are convex and bounded from below. Then for any $u_0 \in K$, there exists a strong solution $u : [0, +\infty[\rightarrow K \text{ of (MOG)}, \text{ such that } u(0) = u_0.$

Strong solution essentially means an absolutely continuous trajectory u satisfying (MOG) for a.e. t > 0.

(MOG) $\dot{u}(t) = s(u(t))$ i.e $\dot{u}(t) + (N_{\mathcal{K}}(u(t)) + Conv\{\partial f_i(u(t))\})^0 = 0$ $f_1(x) = \frac{1}{2} ||x||^2$ and $f_2(x) = \langle a, x \rangle$



(MOG) $\dot{u}(t) = s(u(t))$ i.e $\dot{u}(t) + (N_{\mathcal{K}}(u(t)) + Conv\{\partial f_i(u(t))\})^0 = 0$

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that H is finite-dimentional, and that the functions are convex and bounded from below. Then for any $u_0 \in K$, there exists a strong solution $u : [0, +\infty[\rightarrow K \text{ of (MOG)}, \text{ such that } u(0) = u_0.$

The proof cannot rely on Cauchy-Lipschitz because of lack of Lipschitz regularity.

 \rightarrow Use Morau-Yoshida's regularization onto the f_i 's and the indicator function.

 \rightarrow Use Peano's existence theorem on the regularized system : it asks only continuity but do not guarantee uniqueness.

 \rightarrow Pass to the limit. Hard.

The problem of uniqueness is still open. Can we find hypotheses ensuring Lipschitz continuity of s(u)?

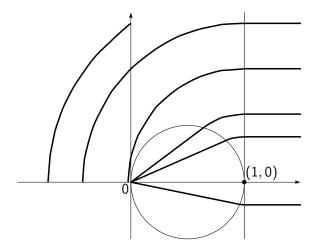
Local Lipschitz property

Suppose K = H, and that the functions are of class $C^{1,1}$. The vector field *s* is Lipschitz continuous at *u* if :

•
$$q=2$$
, and $abla f_1(u)
eq
abla f_2(u).$

• The vectors $\nabla f_i(u)$ are linearly independent.

(MOG) $\dot{u}(t) = s(u(t))$ i.e $\dot{u}(t) + (N_{\mathcal{K}}(u(t)) + Conv\{\partial f_i(u(t))\})^0 = 0$ $f_1(x) = \frac{1}{2} ||x||^2$ and $f_2(x) = \langle a, x \rangle$



A continuous dynamic : Qualitative behaviour

Suppose that the objective functions are lower regular (convex, or continuously differentiable ...). Then for all i = 1..q, the function $t \mapsto f_i(u(t))$ is decreasing.

Suppose that the objective functions are lower regular (convex, or continuously differentiable ...). Then for all i = 1..q, the function $t \mapsto f_i(u(t))$ is decreasing.

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that the objective functions are quasi-convex.

- Then any bounded trajectory is weakly convergent.
- The limit point is a weak Pareto if the functions are convex.
- The limit point is a critical Pareto if the functions are C^1 or convex, and under compact assumption on u.

Suppose that the objective functions are lower regular (convex, or continuously differentiable ...). Then for all i = 1..q, the function $t \mapsto f_i(u(t))$ is decreasing.

Theorem (Attouch, Garrigos, Goudou, 2014)

Suppose that the objective functions are quasi-convex.

- Then any bounded trajectory is weakly convergent.
- The limit point is a weak Pareto if the functions are convex.
- The limit point is a critical Pareto if the functions are C^1 or convex, and under compact assumption on u.
- We recover classic results by taking q = 1.

Suppose that the objective functions are lower regular (convex, or continuously differentiable ...). Then for all i = 1..q, the function $t \mapsto f_i(u(t))$ is decreasing.

Theorem (Attouch, Garrigos, Goudou, 2014)

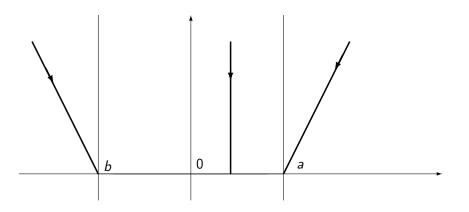
Suppose that the objective functions are quasi-convex.

- Then any bounded trajectory is weakly convergent.
- The limit point is a weak Pareto if the functions are convex.
- The limit point is a critical Pareto if the functions are C^1 or convex, and under compact assumption on u.
- We recover classic results by taking q = 1.
- Can we have strong convergence under stronger assumptions?

A descent method associated to some scalarization Σ⁴_{i=1} θ_if_i. In (MOG) the θ_i are chosen and modified automatically along the time. And ALL the functions decrease.

- A descent method associated to some scalarization Σ⁴_{i=1} θ_if_i. In (MOG) the θ_i are chosen and modified automatically along the time. And ALL the functions decrease.
- A descent method associated to $\max f_i$.

(MOG)
$$\dot{u}(t) = s(u(t))$$
 i.e $\dot{u}(t) + (N_{K}(u(t)) + Conv\{\partial f_{i}(u(t))\})^{0} = 0$
 $f_{1}(x) = ||x - a||^{2}$ and $f_{2}(x) = ||x - b||^{2}$



Bibliography

The Multi-Objective Gradient dynamic

A Continuous Gradient-like Dynamical Approach to Pareto-Optimization in Hilbert Spaces. Attouch, Goudou, 2014 A Dynamic Gradient Approach to Pareto Optimization with Nonsmooth (...). Attouch, Garrigos, Goudou, Submitted. Multi-Objective Gradient algorithm

Steepest descent methods for multicriteria optimization. Fliege, Svaiter, 2000.

A steepest descent method for vector optimization. Drummond, Svaiter, 2005.

Newton's method

Newton's Method for Multiobjective Optimization. Fliege, Drummond, Svaiter, 2009.

A quadratically convergent Newton method for vector optimization. Drummond, Raupp, Svaiter, 2014.

Quasi-Newton's method for multiobjective optimization. Povalej, 2014.

Proximal method

Proximal Methods in Vector Optimization. Bonnel, Iusem, Svaiter, 2005.

Bibliography

The Multi-Objective Gradient dynamic

A Continuous Gradient-like Dynamical Approach to Pareto-Optimization in Hilbert Spaces. Attouch, Goudou, 2014

A Dynamic Gradient Approach to Pareto Optimization with Nonsmooth (...). Attouch, Garrigos, Goudou, Submitted. Multi-Objective Gradient algorithm

Steepest descent methods for multicriteria optimization. Fliege, Svaiter, 2000.

A steepest descent method for vector optimization. Drummond, Svaiter, 2005.

Newton's method

Newton's Method for Multiobjective Optimization. Fliege, Drummond, Svaiter, 2009.

A quadratically convergent Newton method for vector optimization. Drummond, Raupp, Svaiter, 2014.

Quasi-Newton's method for multiobjective optimization. Povalej, 2014.

Proximal method

Proximal Methods in Vector Optimization. Bonnel, Iusem, Svaiter, 2005.

Thank you for your attention !