Convergence rates in convex optimization Beyond the worst-case with the help of geometry

Guillaume Garrigos with Lorenzo Rosasco and Silvia Villa

École Normale Supérieure

Journées du GdR MOA/MIA - Bordeaux - 19 Oct 2017

As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates (x_n)_{n∈ℕ}: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O(n^{-\alpha})$ rates, linear $O(\varepsilon^n)$, superlinear ?

As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates (x_n)_{n∈ℕ}: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O(n^{-\alpha})$ rates, linear $O(\varepsilon^n)$, superlinear ?

It depends on the algorithm and the assumptions made on f.

As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates (x_n)_{n∈ℕ}: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O(n^{-\alpha})$ rates, linear $O(\varepsilon^n)$, superlinear ?

It depends on the algorithm and the assumptions made on f.

Here we will essentially consider first order descent methods, and more simply the forward-backward method.

As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates (x_n)_{n∈ℕ}: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O(n^{-\alpha})$ rates, linear $O(\varepsilon^n)$, superlinear ?

It depends on the algorithm and the assumptions made on f.

Here we will essentially consider first order descent methods, and more simply the forward-backward method.

1 Classic theory

2 Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry

3 Inverse problems in Hilbert spaces

- Linear inverse problems
- Sparse inverse problems

Let f = g + h be convex, with h *L*-Lipschitz smooth Let $x_{n+1} = \operatorname{prox}_{\lambda g}(x_n - \lambda \nabla h(x_n)), \lambda \in]0, 2/L[.$

Theorem (general convex case)

- argmin $f = \emptyset$: x_n diverges, no rates for $f(x_n) \inf f$.
- argmin $f \neq \emptyset$: x_n weakly converges to $x_\infty \in \operatorname{argmin} f$, and $f(x_n) \inf f = o(n^{-1})$.

Let f = g + h be convex, with h *L*-Lipschitz smooth Let $x_{n+1} = \operatorname{prox}_{\lambda g}(x_n - \lambda \nabla h(x_n)), \lambda \in]0, 2/L[.$

Theorem (general convex case)

- argmin $f = \emptyset$: x_n diverges, no rates for $f(x_n) \inf f$.
- argmin $f \neq \emptyset$: x_n weakly converges to $x_\infty \in \operatorname{argmin} f$, and $f(x_n) \inf f = o(n^{-1})$.

Theorem (strongly convex case)

Assume that f is strongly convex. Then x_n strongly converges to $x_{\infty} \in \operatorname{argmin} f$, and both iterates and values converge linearly.

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
s. convex	linear	linear

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
?	?	?
s. convex	linear	linear

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
?	?	?
?	linear	linear

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
?	?	?
?	linear	linear

 $\longrightarrow \mathsf{Use \ geometry!}$

Known examples

 $A \in L(X, Y), y \in Y.$

Known examples

 $A \in L(X, Y), y \in Y.$

Known examples

 $A \in L(X, Y)$, $y \in Y$.

•
$$f(x) = \frac{1}{2} ||Ax - y||^2$$
, $x_{n+1} = x_n - \tau A^* (Ax_n - y)$

- If R(A) is closed, linear convergence.
- Else, strong convergence for iterates, arbitrarily slow.

 $A \in L(X, Y), y \in Y.$

•
$$f(x) = \frac{1}{2} ||Ax - y||^2$$
, $x_{n+1} = x_n - \tau A^* (Ax_n - y)$

• If R(A) is closed, linear convergence.

• Else, strong convergence for iterates, arbitrarily slow.

•
$$f(x) = \alpha ||x||_1 + \frac{1}{2} ||Ax - y||^2, \ x_{n+1} = S_{\alpha\tau} (x_n - \tau A^* (Ax_n - y))$$

• In
$$X=\mathbb{R}^{N}$$
, the convergence is linear. 1

In X = ℓ²(ℕ), ISTA converges strongly². Linear rates can also be obtained under some conditions³. In fact not necessary⁴.

¹Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012)
²Daubechies, Defrise, DeMol (2004)
³Bredies, Lorenz (2008)
⁴End of this talk

 $A \in L(X, Y)$, $y \in Y$.

•
$$f(x) = \frac{1}{2} ||Ax - y||^2$$
, $x_{n+1} = x_n - \tau A^*(Ax_n - y)$

• If R(A) is closed, linear convergence.

• Else, strong convergence for iterates, arbitrarily slow.

•
$$f(x) = \alpha ||x||_1 + \frac{1}{2} ||Ax - y||^2$$
, $x_{n+1} = S_{\alpha \tau} (x_n - \tau A^* (Ax_n - y))$

• In
$$X=\mathbb{R}^N$$
, the convergence is linear.¹

- In X = ℓ²(ℕ), ISTA converges strongly². Linear rates can also be obtained under some conditions³. In fact not necessary⁴.
- Gap between theory and practice.

⁴ Bredies, Lorenz (2008

⁴End of this talk

¹Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012) ²Daubechies, Defrise, DeMol (2004) ³Bredies, Lorenz (2008)

Classic theory

2 Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry

3 Inverse problems in Hilbert spaces

- Linear inverse problems
- Sparse inverse problems

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega} > 0$ such that $\forall x \in \Omega, \ \frac{\gamma_{\Omega}}{p} \text{dist} (x, \operatorname{argmin} f)^{p} \leq f(x) - \inf f.$

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

DefinitionWe say that f is p-conditioned on Ω if $\exists \gamma_{\Omega} > 0$ such that $\forall x \in \Omega, \ \frac{\gamma_{\Omega}}{p} \text{dist} (x, \operatorname{argmin} f)^p \leq f(x) - \inf f.$

• The exponent *p* governs the local geometry of *f*, and then the rates of convergence. Easy to get.

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition

We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega} > 0$ such that

$$orall x \in \Omega, \; rac{\gamma_\Omega}{p} ext{dist} \, (x, ext{argmin} \; f)^p \leq f(x) - ext{inf} \; f.$$

- The exponent *p* governs the local geometry of *f*, and then the rates of convergence. Easy to get.
- γ_{Ω} governs the constant in the rates. Hard to estimate properly.

¹Bolte, Nguyen, Peypouquet, Suter, 2015 - Garrigos, Rosasco , Villa, 2016.

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition

We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega} > 0$ such that

$$orall x \in \Omega, \; rac{\gamma_\Omega}{p} ext{dist} \, (x, ext{argmin} \; f)^p \leq f(x) - ext{inf} \; f.$$

- The exponent *p* governs the local geometry of *f*, and then the rates of convergence. Easy to get.
- γ_{Ω} governs the constant in the rates. Hard to estimate properly.
- "Equivalent" to Lojasiewicz inequality/metric subregularity¹.

¹Bolte, Nguyen, Peypouquet, Suter, 2015 - Garrigos, Rosasco , Villa, 2016.

• strongly convex functions are 2-conditioned on X, $\gamma_X = \gamma$

• strongly convex functions are 2-conditioned on X, $\gamma_X=\gamma$

•
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

• If R(A) is closed, f is 2-conditioned on X, $\gamma_X = \sigma_{min}^*(A^*A)$.

ullet strongly convex functions are 2-conditioned on X, $\gamma_{X}=\gamma$

•
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

- If R(A) is closed, f is 2-conditioned on X, $\gamma_X = \sigma_{min}^*(A^*A)$.
- Else, complicated (see later).

- strongly convex functions are 2-conditioned on X, $\gamma_X=\gamma$
- $f(x) = \frac{1}{2} ||Ax y||^2$
 - If R(A) is closed, f is 2-conditioned on X, $\gamma_X = \sigma_{min}^*(A^*A)$.
 - Else, complicated (see later).
- In ℝ^N, convex polynomial by parts functions are *p*-conditioned¹ on sublevel sets, with *p* = 1 + (*d* − 1)^N, but γ_[f≤r] unknown. Example: *f*(*x*) = α||*x*||₁ + ¹/₂||*Ax* − *y*||².

- ullet strongly convex functions are 2-conditioned on X, $\gamma_X=\gamma$
- $f(x) = \frac{1}{2} ||Ax y||^2$
 - If R(A) is closed, f is 2-conditioned on X, $\gamma_X = \sigma_{min}^*(A^*A)$.
 - Else, complicated (see later).
- In ℝ^N, convex polynomial by parts functions are *p*-conditioned¹ on sublevel sets, with *p* = 1 + (*d* − 1)^N, but γ_[f≤r] unknown. Example: *f*(*x*) = α||*x*||₁ + ¹/₂||*Ax* − *y*||².
- Almost any simple function used in practice: $||x||_{\alpha}^{p}$, KL divergence, etc...

- strongly convex functions are 2-conditioned on X, $\gamma_X = \gamma$
- $f(x) = \frac{1}{2} ||Ax y||^2$
 - If R(A) is closed, f is 2-conditioned on X, $\gamma_X = \sigma_{min}^*(A^*A)$.
 - Else, complicated (see later).
- In ℝ^N, convex polynomial by parts functions are *p*-conditioned¹ on sublevel sets, with *p* = 1 + (*d* − 1)^N, but γ_[f≤r] unknown. Example: *f*(*x*) = α||*x*||₁ + ¹/₂||*Ax* − *y*||².
- Almost any simple function used in practice: ||x||^p_α, KL divergence, etc...
- semi-algebraic functions are conditioned around minimizers². p and γ unknown.

²Bolte, Daniilidis, Lewis, Shiota, 2007

¹Yang, 2009 + Li, 2012

Theorem: Sum rule¹

Assume that f_1 and f_2 are respectively p_1 and p_2 -conditioned, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification condition, $f_1 + f_2$ is *p*-conditioned on Ω with $p = \max\{p_1, p_2\}$.

Theorem: Composition with linear operator (closed range)¹

Assume that f is p-conditioned and smooth, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification conditions, $f \circ A$ is p-conditioned on $A^{-1}\Omega$.

¹Lewis, Drusvyatskiy (2016) for p = 2; G., Rosasco, Villa (2016) for $p \ge 1$.

Theorem: Sum rule¹

Assume that f_1 and f_2 are respectively p_1 and p_2 -conditioned, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification condition, $f_1 + f_2$ is *p*-conditioned on Ω with $p = \max\{p_1, p_2\}$.

Theorem: Composition with linear operator (closed range) 1

Assume that f is p-conditioned and smooth, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification conditions, $f \circ A$ is p-conditioned on $A^{-1}\Omega$.

Not always true without QC! See $||M||_* + ||AM - Y||^2$.

¹Lewis, Drusvyatskiy (2016) for p = 2; G., Rosasco, Villa (2016) for $p \ge 1$.

Classic theory

2 Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry

3 Inverse problems in Hilbert spaces

- Linear inverse problems
- Sparse inverse problems

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

Let $(x_n)_{n\in\mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is *p*-conditioned on Ω .

Then x_n converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

Let $(x_n)_{n\in\mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is *p*-conditioned on Ω .

Then x_n converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:

() if p = 2, linear convergence with $\varepsilon \in]0, 1[, C > 0]$

 $f(x_{n+1}) - \inf f \leq \varepsilon(f(x_n) - \inf f) \text{ and } ||x_n - x^{\dagger}|| \leq C\sqrt{\varepsilon}^n$

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

Let $(x_n)_{n\in\mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then x_n converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:

9 if
$$p = 2$$
, linear convergence with $\varepsilon \in]0, 1[, C > 0]$

$$f(x_{n+1}) - \inf f \leq \varepsilon(f(x_n) - \inf f) \text{ and } ||x_n - x^{\dagger}|| \leq C\sqrt{\varepsilon}^n$$

2 if p > 2, sublinear convergence with $C_1, C_2 > 0$

$$f(x_n) - \inf f \le C_1 n^{\frac{-p}{p-2}} \text{ and } \|x_n - x^{\dagger}\| \le C_2 n^{\frac{-1}{p-2}}.$$

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

Let $(x_n)_{n\in\mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then x_n converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:

9 if
$$p = 2$$
, linear convergence with $\varepsilon \in]0, 1[, C > 0]$

$$f(x_{n+1}) - \inf f \le \varepsilon(f(x_n) - \inf f) \text{ and } ||x_n - x^{\dagger}|| \le C\sqrt{\varepsilon}^n$$

2 if p > 2, sublinear convergence with $C_1, C_2 > 0$

$$f(x_n) - \inf f \le C_1 n^{\frac{-p}{p-2}} \text{ and } ||x_n - x^{\dagger}|| \le C_2 n^{\frac{-1}{p-2}}.$$

NB: All the constants depend on $(L, \lambda, p, \gamma_{f,\Omega}, f(x^0) - \inf f)$.

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then p = 2 gives linear rates, p > 2 sublinear rates.

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then p = 2 gives linear rates, p > 2 sublinear rates.

Some remarks on the convergence result:

• These rates are optimal (see $f(x) = ||x||^p$).

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then p = 2 gives linear rates, p > 2 sublinear rates.

- These rates are optimal (see $f(x) = ||x||^p$).
- Rates involve a generalized condition number κ ∝ L/γ_{f,Ω}.
 For p = 2 there is ε = κ/(κ + 1).

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then p = 2 gives linear rates, p > 2 sublinear rates.

- These rates are optimal (see $f(x) = ||x||^p$).
- Rates involve a generalized condition number $\kappa \propto L/\gamma_{f,\Omega}$. For p = 2 there is $\varepsilon = \kappa/(\kappa + 1)$.
- These results extends to the nonconvex setting.

- (Localization) $(x_n)_{n\in\mathbb{N}}\subset\Omega$,
- (Geometry) f is p-conditioned on Ω .

Then p = 2 gives linear rates, p > 2 sublinear rates.

- These rates are optimal (see $f(x) = ||x||^p$).
- Rates involve a generalized condition number κ ∝ L/γ_{f,Ω}.
 For p = 2 there is ε = κ/(κ + 1).
- These results extends to the nonconvex setting.
- These results extends to general first-order descent methods.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

• Clarify the local vs global rates.

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω .

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

• Clarify the local vs global rates. $\exists (\delta, r) \in]0, +\infty[^2, f \text{ is } p\text{-conditioned on } \Omega := B(\bar{x}, \delta) \cap [f - \inf \leq r].$

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω .

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

• Clarify the local vs global rates. $\exists (\delta, r) \in]0, +\infty[^2, f \text{ is } p\text{-conditioned on } \Omega := B(\bar{x}, \delta) \cap [f - \inf \leq r].$ Fejer + descent $\Rightarrow \exists N \in \mathbb{N}, \forall n \geq N, \quad x^n \in \Omega \Rightarrow \text{Local rates.}$

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω .

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

• Clarify the local vs global rates. $\forall (\delta, r) \in]0, +\infty[^2, f \text{ is } p\text{-conditioned on } \Omega := B(\bar{x}, \delta) \cap [f - \inf \leq r].$

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω .

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

• Clarify the local vs global rates. $\forall (\delta, r) \in]0, +\infty[^2, f \text{ is } p\text{-conditioned on } \Omega := B(\bar{x}, \delta) \cap [f - \inf \leq r].$ Fejer + descent $\Rightarrow \forall n \geq 0, x^n \in \Omega, \Rightarrow$ Global rates.

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x) = ||Ax y||^2$.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x) = ||Ax y||^2$.
 - If Im A not closed, Haraux and Jendoubi show that no conditioning hold on $B(\bar{x}, \delta)$.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) & (Frankel, G., Peypouquet, 2014)

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x) = ||Ax y||^2$.
 - If Im A not closed, Haraux and Jendoubi show that no conditioning hold on $B(\bar{x}, \delta)$.
 - We prove that conditioning holds on "Sobolev" spaces.

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x) = ||Ax y||^2$.
- We can restrict to low-dimensional sets.

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x) = ||Ax y||^2$.
- We can restrict to low-dimensional sets.

If f = g + h with h smooth and g partially smooth + QC, then $\exists N \in N, \forall n \ge N, x^n \in \mathcal{M}$ (identification of active manifold)

- (Localization) $(x_n)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x) = ||Ax y||^2$.
- We can restrict to low-dimensional sets.

If f = g + h with h smooth and g partially smooth + QC, then $\exists N \in N, \forall n \ge N, x^n \in \mathcal{M}$ (identification of active manifold) \rightarrow conditioning on \mathcal{M} is enough, no need for strong convexity.

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
geometry, $p > 2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p = 2$	linear	linear
geometry, 1 < <i>p</i> < 2	superlinear	superlinear
geometry, $p=1$	finite	finite

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
geometry, $p > 2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p = 2$	linear	linear
geometry, 1	superlinear	superlinear
geometry, $ ho=1$	finite	finite

 ${\ensuremath{\,\circ\,}}$ We have a spectra covering "almost" all convex functions in finite dimensions 1 .

¹Bolte, Daniilidis, Ley, Mazet - 2010

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p = 2$	linear	linear
geometry, 1 < <i>p</i> < 2	superlinear	superlinear
geometry, $p=1$	finite	finite

- ${\ensuremath{\,\circ\,}}$ We have a spectra covering "almost" all convex functions in finite dimensions 1 .
- The hypothesis to get linear rates is minimal

¹Bolte, Daniilidis, Ley, Mazet - 2010

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
geometry, $p > 2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p = 2$	linear	linear
geometry, 1 < <i>p</i> < 2	superlinear	superlinear
geometry, $ ho=1$	finite	finite

Proposition

If linear rates hold on Ω :

```
(\exists \varepsilon \in ]0,1[)(\forall x \in \Omega) \quad \operatorname{dist}(FB(x),\operatorname{argmin} f) \leq \varepsilon \operatorname{dist}(x,\operatorname{argmin} f),
```

then f is 2-conditioned on Ω .

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p = 2$	linear	linear
geometry, 1 < <i>p</i> < 2	superlinear	superlinear
geometry, $p=1$	finite	finite

- We have a spectra covering "almost" all convex functions in finite dimensions¹ .
- The hypothesis to get linear rates is minimal
- Up to now, the infinite dimensional setting is less understood.

¹Bolte, Daniilidis, Ley, Mazet - 2010

Classic theory

2 Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry

3 Inverse problems in Hilbert spaces

- Linear inverse problems
- Sparse inverse problems

Least squares:
$$f(x) = rac{1}{2} \|Ax - y\|^2$$

Assume that R(A) is not closed, and $y \in \text{dom } A^{\dagger}$. The FB method becomes $x_{n+1} = x_n - \lambda A^* (Ax_n - y)$, $x_0 = 0$.

Least squares:
$$f(x) = rac{1}{2} \|Ax - y\|^2$$

Assume that R(A) is not closed, and $y \in \text{dom } A^{\dagger}$. The FB method becomes $x_{n+1} = x_n - \lambda A^*(Ax_n - y)$, $x_0 = 0$.

 x_n converges to $x^{\dagger} := A^{\dagger}y$. But how fast? \rightarrow Old answer: it depends on the regularity of x^{\dagger} . Least squares: $f(x) = \frac{1}{2} ||Ax - y||^2$

Assume that R(A) is not closed, and $y \in \text{dom } A^{\dagger}$. The FB method becomes $x_{n+1} = x_n - \lambda A^* (Ax_n - y)$, $x_0 = 0$.

 x_n converges to $x^{\dagger} := A^{\dagger}y$. But how fast? \rightarrow Old answer: it depends on the regularity of x^{\dagger} .

In inverse problems, the spaces $R(A^*A^\mu)$ play the role of Sobolev in L^2 .

Example: Sobolev regularity

If $X = Y = L^2([0, 2\pi])$ and A is the integration operator, then

 $R(A^*A^{\mu}) = H^{2\mu}([0, 2\pi]).$

Theorem: Geometry on Sobolev spaces

The least squares f is p-conditioned on each affine space $x^{\dagger} + R(A^*A^{\mu})$, with the exponent $p = 2 + \mu^{-1}$.

Fact: if $x^{\dagger} \in R(A^*A^{\mu})$ and $x_0 = 0$, then $(x_n)_{n \in \mathbb{N}} \subset x^{\dagger} + R(A^*A^{\mu})$.

Theorem: Convergence for Landweber's algorithm

If $x_0 = 0$, and $x^{\dagger} \in R(A^*A^{\mu})$, then the convergence is sublinear:

$$f(x_n) - \inf f = O\left(n^{-(1+2\mu)}
ight)$$
 and $\|x_n - x^{\dagger}\| = O\left(n^{-\mu}
ight)$.

NB: the exponent $p = 2 + \mu^{-1}$ and the rates are **tight**.

Least squares: what if argmin $||Ax - y||^2 = \emptyset$?

It might be that $x^{\dagger} = A^{\dagger}y$ doesn't exist...

It might be that $x^{\dagger} = A^{\dagger}y$ doesn't exist...

Typically in learning we look for a function in $L^2(\mathcal{X} \times \mathcal{Y}, \rho)$ But in practice we work in a RKHS $X \subset L^2$ It might be that $x^{\dagger} = A^{\dagger}y$ doesn't exist...

Typically in learning we look for a function in $L^2(\mathcal{X} \times \mathcal{Y}, \rho)$ But in practice we work in a RKHS $X \subset L^2$

Even if f has no minimizers, we still want to estimate $f(x^n) - \inf f \to 0$ It will depend on how far the solution is from X. It might be that $x^{\dagger} = A^{\dagger}y$ doesn't exist...

Typically in learning we look for a function in $L^2(\mathcal{X} \times \mathcal{Y}, \rho)$ But in practice we work in a RKHS $X \subset L^2$

Even if f has no minimizers, we still want to estimate $f(x^n) - \inf f \to 0$ It will depend on how far the solution is from X.

We look at how regular is $y^{\dagger} := \operatorname{proj}(y, \overline{\operatorname{Im} A})$ within $\overline{\operatorname{Im} A} \subset Y$.

Theorem: Geometry on Sobolev spaces (w.r.t. data space Y)

The least squares f is "p-conditioned" on each affine space

$$A^{-1}\left(y^{\dagger}+R(AA^{*\nu})\right),\,\nu>0$$

with the exponent $p = 2 + (\nu - 1/2)^{-1}$.

Fact: if $\nu < 1/2$ then p < 0 !! f behaves like $\frac{1}{t|\rho|}$.

Theorem: Convergence for Landweber's algorithm

If $x_0 = 0$, and $y^{\dagger} \in R(AA^{*\nu})$, then the convergence is sublinear:

$$f(x_n) - \inf f = O\left(n^{-2\nu}\right).$$

Assume f to be convex and $(x_n)_{n\in\mathbb{N}}$ be generated by a first-order descent method.

function	values	iterates
argmin $f = \emptyset$	o(1)	diverge
geometry, $p < 0$	$O\left(n^{\frac{-p}{p-2}}\right)$	diverge
argmin $f \neq \emptyset$	$o(n^{-1})$	weak convergence
geometry, $p > 2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p = 2$	linear	linear
geometry, 1 < <i>p</i> < 2	superlinear	superlinear
geometry, $p=1$	finite	finite

Classic theory

2 Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry

Inverse problems in Hilbert spaces

- Linear inverse problems
- Sparse inverse problems

Consider the Lasso in $\ell^2(\mathbb{N})$

$$f(x) = \alpha \|x\|_1 + \frac{1}{2} \|Ax - y\|^2$$

How fast do converge ISTA? O(1/n)? linearly?

Consider the Lasso in $\ell^2(\mathbb{N})$

$$f(x) = \alpha \|x\|_1 + \frac{1}{2} \|Ax - y\|^2$$

How fast do converge ISTA? O(1/n)? linearly?

- linear rates if A is injective on finite supports
- linear rates if qualification condition holds

Consider the Lasso in $\ell^2(\mathbb{N})$

$$f(x) = \alpha \|x\|_1 + \frac{1}{2} \|Ax - y\|^2$$

How fast do converge ISTA? O(1/n)? linearly?

- linear rates if A is injective on finite supports
- linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists Ω such that $(x_n)_{n \in \mathbb{N}} \subset \Omega$ and f is 2-conditioned on Ω . So ISTA always converge linearly.

Consider the Lasso in $\ell^2(\mathbb{N})$

$$f(x) = \alpha \|x\|_1 + \frac{1}{2} \|Ax - y\|^2$$

How fast do converge ISTA? O(1/n)? linearly?

- linear rates if A is injective on finite supports
- linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists Ω such that $(x_n)_{n \in \mathbb{N}} \subset \Omega$ and f is 2-conditioned on Ω . So ISTA always converge linearly.

Similar result by replacing $\|\cdot\|_1$ with $\|\cdot\|_1 + \|\cdot\|_p^p$.

Conclusion

You have a descent-related (dissipative?) algorithm? Strong convexity gives you strong convergence and better rates?

Try to use the 2-conditioning:

$$\gamma \operatorname{dist}(x, \operatorname{argmin} f)^2 \leq f(x) - \inf f$$

 \longrightarrow It should give the same results than strong convexity \longrightarrow It applies to a way more general class of functions (actually super sharp for linear rates)

Conclusion/Discussion

• Structural results allow a practical identification of geometry.

Conclusion/Discussion

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on *a priori* unrelated results.

Conclusion/Discussion

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on *a priori* unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w) = \sum \ell(\langle x_i, w \rangle y_i)$.

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on *a priori* unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w) = \sum \ell(\langle x_i, w \rangle y_i)$.
- Descent methods very well understood. Holds for general first-order descent methods
 - **(descent)** $a \|x_{n+1} x_n\|^2 \le f(x_n) f(x_{n+1})$
 - **2** (1st order) $b \|\partial f(x_{n+1})\|_{-} \le \|x_{n+1} x_n\|$

Allows even more structured methods (decomposition by blocs), or variants (variable metric, inexact computations)

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w) = \sum \ell(\langle x_i, w \rangle y_i)$.
- Descent methods very well understood. Holds for general first-order descent methods
- Recently: application to stochastic gradient methods.

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on *a priori* unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w) = \sum \ell(\langle x_i, w \rangle y_i)$.
- Descent methods very well understood. Holds for general first-order descent methods
- Recently: application to stochastic gradient methods.
- Geometry is a powerful tool not only for rates, but also for regularization! (see Silvia's talk)

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on *a priori* unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w) = \sum \ell(\langle x_i, w \rangle y_i)$.
- Descent methods very well understood. Holds for general first-order descent methods
- Recently: application to stochastic gradient methods.
- Geometry is a powerful tool not only for rates, but also for regularization! (see Silvia's talk)
- Can inertial methods benefit from this analysis? Are they adaptive?

Thanks for your attention !