Convergence rates in convex optimization Beyond the worst-case with the help of geometry

Guillaume Garrigos

with Lorenzo Rosasco and Silvia Villa
École Normale Supérieure

Journées du GdR MOA/MIA - Bordeaux - 19 Oct 2017

Introduction

Setting: X Hilbert space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ convex I.s.c. Problem: Minimize $f(x), x \in X$.
Tool: My favorite algorithm.

Setting: X Hilbert space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ convex I.s.c.
Problem: Minimize $f(x), x \in X$.
Tool: My favorite algorithm.
As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates $\left(x_{n}\right)_{n \in \mathbb{N}}$: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O\left(n^{-\alpha}\right)$ rates, linear $O\left(\varepsilon^{n}\right)$, superlinear ?

Setting: X Hilbert space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ convex I.s.c.
Problem: Minimize $f(x), x \in X$.
Tool: My favorite algorithm.
As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates $\left(x_{n}\right)_{n \in \mathbb{N}}$: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O\left(n^{-\alpha}\right)$ rates, linear $O\left(\varepsilon^{n}\right)$, superlinear ?
It depends on the algorithm and the assumptions made on f.

Setting: X Hilbert space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ convex I.s.c.
Problem: Minimize $f(x), x \in X$.
Tool: My favorite algorithm.
As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates $\left(x_{n}\right)_{n \in \mathbb{N}}$: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O\left(n^{-\alpha}\right)$ rates, linear $O\left(\varepsilon^{n}\right)$, superlinear ?
It depends on the algorithm and the assumptions made on f.
Here we will essentially consider first order descent methods, and more simply the forward-backward method.

Setting: X Hilbert space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ convex I.s.c.
Problem: Minimize $f(x), x \in X$.
Tool: My favorite algorithm.
As optimizers, we often face the same questions concerning the convergence of an algorithm:

- (Qualitative result) For the iterates $\left(x_{n}\right)_{n \in \mathbb{N}}$: weak, strong convergence?
- (Quantitative result) For the iterates and/or the values: sublinear $O\left(n^{-\alpha}\right)$ rates, linear $O\left(\varepsilon^{n}\right)$, superlinear ?
It depends on the algorithm and the assumptions made on f.
Here we will essentially consider first order descent methods, and more simply the forward-backward method.

Contents

(1) Classic theory

(2) Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry
(3) Inverse problems in Hilbert spaces
- Linear inverse problems
- Sparse inverse problems

Classic convergence results

Let $f=g+h$ be convex, with $h \quad L$-Lipschitz smooth Let $\left.x_{n+1}=\operatorname{prox}_{\lambda g}\left(x_{n}-\lambda \nabla h\left(x_{n}\right)\right), \lambda \in\right] 0,2 / L[$.

Theorem (general convex case)

- $\operatorname{argmin} f=\emptyset: x_{n}$ diverges, no rates for $f\left(x_{n}\right)-\inf f$.
- $\operatorname{argmin} f \neq \emptyset: x_{n}$ weakly converges to $x_{\infty} \in \operatorname{argmin} f$, and $f\left(x_{n}\right)-\inf f=o\left(n^{-1}\right)$.

Classic convergence results

Let $f=g+h$ be convex, with $h \quad L$-Lipschitz smooth Let $\left.x_{n+1}=\operatorname{prox}_{\lambda g}\left(x_{n}-\lambda \nabla h\left(x_{n}\right)\right), \lambda \in\right] 0,2 / L[$.

Theorem (general convex case)

- $\operatorname{argmin} f=\emptyset: x_{n}$ diverges, no rates for $f\left(x_{n}\right)-\inf f$.
- $\operatorname{argmin} f \neq \emptyset: x_{n}$ weakly converges to $x_{\infty} \in \operatorname{argmin} f$, and $f\left(x_{n}\right)-\inf f=o\left(n^{-1}\right)$.

Theorem (strongly convex case)

Assume that f is strongly convex. Then x_{n} strongly converges to $x_{\infty} \in \operatorname{argmin} f$, and both iterates and values converge linearly.

Classic convergence results

Assume f to be convex and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by forward-backward.

function $\operatorname{argmin} f=\emptyset$	values	iterates
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	diverge
	weak convergence	
s. convex	linear	linear

Classic convergence results

Assume f to be convex and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by forward-backward.

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
$?$	$?$	$?$
s. convex	linear	linear

Classic convergence results

Assume f to be convex and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by forward-backward.

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
$?$	$?$	$?$
$?$	linear	linear

Classic convergence results

Assume f to be convex and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by forward-backward.

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
$?$	$?$	$?$
$?$	linear	linear

\longrightarrow Use geometry!

Known examples

$A \in L(X, Y), y \in Y$.

- $f(x)=\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=x_{n}-\tau A^{*}\left(A x_{n}-y\right)$
- If $R(A)$ is closed, linear convergence.

Known examples

$A \in L(X, Y), y \in Y$.

- $f(x)=\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=x_{n}-\tau A^{*}\left(A x_{n}-y\right)$
- If $R(A)$ is closed, linear convergence.

Known examples

$A \in L(X, Y), y \in Y$.

- $f(x)=\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=x_{n}-\tau A^{*}\left(A x_{n}-y\right)$
- If $R(A)$ is closed, linear convergence.
- Else, strong convergence for iterates, arbitrarily slow.

$$
A \in L(X, Y), y \in Y
$$

- $f(x)=\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=x_{n}-\tau A^{*}\left(A x_{n}-y\right)$
- If $R(A)$ is closed, linear convergence.
- Else, strong convergence for iterates, arbitrarily slow.
- $f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=\mathcal{S}_{\alpha \tau}\left(x_{n}-\tau A^{*}\left(A x_{n}-y\right)\right)$
- $\operatorname{In} X=\mathbb{R}^{N}$, the convergence is linear. ${ }^{1}$
- In $X=\ell^{2}(\mathbb{N})$, ISTA converges strongly ${ }^{2}$. Linear rates can also be obtained under some conditions ${ }^{3}$. In fact not necessary ${ }^{4}$.

[^0]$$
A \in L(X, Y), y \in Y
$$

- $f(x)=\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=x_{n}-\tau A^{*}\left(A x_{n}-y\right)$
- If $R(A)$ is closed, linear convergence.
- Else, strong convergence for iterates, arbitrarily slow.
- $f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}, x_{n+1}=\mathcal{S}_{\alpha \tau}\left(x_{n}-\tau A^{*}\left(A x_{n}-y\right)\right)$
- $\operatorname{In} X=\mathbb{R}^{N}$, the convergence is linear. ${ }^{1}$
- In $X=\ell^{2}(\mathbb{N})$, ISTA converges strongly ${ }^{2}$. Linear rates can also be obtained under some conditions ${ }^{3}$. In fact not necessary ${ }^{4}$.
- Gap between theory and practice.

[^1]
Contents

(1) Classic theory

(2) Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry
(3) Inverse problems in Hilbert spaces
- Linear inverse problems
- Sparse inverse problems

Conditioned and Lojasiewicz functions

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition

We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega}>0$ such that

$$
\forall x \in \Omega, \frac{\gamma_{\Omega}}{p} \operatorname{dist}(x, \operatorname{argmin} f)^{p} \leq f(x)-\inf f
$$

Conditioned and Lojasiewicz functions

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition

We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega}>0$ such that

$$
\forall x \in \Omega, \frac{\gamma_{\Omega}}{p} \operatorname{dist}(x, \operatorname{argmin} f)^{p} \leq f(x)-\inf f .
$$

- The exponent p governs the local geometry of f, and then the rates of convergence. Easy to get.

Conditioned and Lojasiewicz functions

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition

We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega}>0$ such that

$$
\forall x \in \Omega, \frac{\gamma_{\Omega}}{p} \operatorname{dist}(x, \operatorname{argmin} f)^{p} \leq f(x)-\inf f .
$$

- The exponent p governs the local geometry of f, and then the rates of convergence. Easy to get.
- γ_{Ω} governs the constant in the rates. Hard to estimate properly.

[^2]
Conditioned and Lojasiewicz functions

Let $p \geq 1$ and $\Omega \subset X$ and arbitrary set.

Definition

We say that f is p-conditioned on Ω if $\exists \gamma_{\Omega}>0$ such that

$$
\forall x \in \Omega, \frac{\gamma_{\Omega}}{p} \operatorname{dist}(x, \operatorname{argmin} f)^{p} \leq f(x)-\inf f .
$$

- The exponent p governs the local geometry of f, and then the rates of convergence. Easy to get.
- γ_{Ω} governs the constant in the rates. Hard to estimate properly.
- "Equivalent" to Lojasiewicz inequality/metric subregularity ${ }^{1}$.

[^3]
Identifying the geometry: Some examples

- strongly convex functions are 2-conditioned on $X, \gamma_{X}=\gamma$

Identifying the geometry: Some examples

- strongly convex functions are 2-conditioned on $X, \gamma_{X}=\gamma$
- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- If $R(A)$ is closed, f is 2-conditioned on $X, \gamma_{X}=\sigma_{\text {min }}^{*}\left(A^{*} A\right)$.

Identifying the geometry: Some examples

- strongly convex functions are 2-conditioned on $X, \gamma_{X}=\gamma$
- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- If $R(A)$ is closed, f is 2-conditioned on $X, \gamma_{X}=\sigma_{\text {min }}^{*}\left(A^{*} A\right)$.
- Else, complicated (see later).

Identifying the geometry: Some examples

- strongly convex functions are 2-conditioned on $X, \gamma_{X}=\gamma$
- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- If $R(A)$ is closed, f is 2-conditioned on $X, \gamma_{X}=\sigma_{\text {min }}^{*}\left(A^{*} A\right)$.
- Else, complicated (see later).
- $\ln \mathbb{R}^{N}$, convex polynomial by parts functions are p-conditioned ${ }^{1}$ on sublevel sets, with $p=1+(d-1)^{N}$, but $\gamma_{[f \leq r]}$ unknown.
Example: $f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}$.

Identifying the geometry: Some examples

- strongly convex functions are 2-conditioned on $X, \gamma_{X}=\gamma$
- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- If $R(A)$ is closed, f is 2-conditioned on $X, \gamma_{X}=\sigma_{\text {min }}^{*}\left(A^{*} A\right)$.
- Else, complicated (see later).
- In \mathbb{R}^{N}, convex polynomial by parts functions are p-conditioned ${ }^{1}$ on sublevel sets, with $p=1+(d-1)^{N}$, but $\gamma_{[f \leq r]}$ unknown.
Example: $f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}$.
- Almost any simple function used in practice: $\|x\|_{\alpha}^{p}$, KL divergence, etc...

Identifying the geometry: Some examples

- strongly convex functions are 2-conditioned on $X, \gamma_{X}=\gamma$
- $f(x)=\frac{1}{2}\|A x-y\|^{2}$
- If $R(A)$ is closed, f is 2-conditioned on $X, \gamma_{X}=\sigma_{\text {min }}^{*}\left(A^{*} A\right)$.
- Else, complicated (see later).
- In \mathbb{R}^{N}, convex polynomial by parts functions are p-conditioned ${ }^{1}$ on sublevel sets, with $p=1+(d-1)^{N}$, but $\gamma_{[f \leq r]}$ unknown.
Example: $f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}$.
- Almost any simple function used in practice: $\|x\|_{\alpha}^{p}$, KL divergence, etc...
- semi-algebraic functions are conditioned around minimizers ${ }^{2}$. p and γ unknown.

[^4]
Theorem: Sum rule ${ }^{1}$

Assume that f_{1} and f_{2} are respectively p_{1} and p_{2}-conditioned, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification condition, $f_{1}+f_{2}$ is p-conditioned on Ω with $p=\max \left\{p_{1}, p_{2}\right\}$.

Theorem: Composition with linear operator (closed range) ${ }^{1}$

Assume that f is p-conditioned and smooth, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification conditions, $f \circ A$ is p-conditioned on $A^{-1} \Omega$.
${ }^{1}$ Lewis, Drusvyatskiy (2016) for $p=2$; G., Rosasco, Villa (2016) for $p \geq 1$.

Theorem: Sum rule ${ }^{1}$

Assume that f_{1} and f_{2} are respectively p_{1} and p_{2}-conditioned, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification condition, $f_{1}+f_{2}$ is p-conditioned on Ω with $p=\max \left\{p_{1}, p_{2}\right\}$.

Theorem: Composition with linear operator (closed range) ${ }^{1}$

Assume that f is p-conditioned and smooth, up to linear perturbations, on $\Omega \subset X$. Then, under some qualification conditions, $f \circ A$ is p-conditioned on $A^{-1} \Omega$.

Not always true without QC ! See $\|M\|_{*}+\|\mathcal{A} M-\mathcal{Y}\|^{2}$.
${ }^{1}$ Lewis, Drusvyatskiy (2016) for $p=2$; G., Rosasco, Villa (2016) for $p \geq 1$.

Contents

(1) Classic theory
(2) Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry
(3) Inverse problems in Hilbert spaces
- Linear inverse problems
- Sparse inverse problems

Exploiting the geometry: Convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then x_{n} converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:

Exploiting the geometry: Convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then x_{n} converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:
(1) if $p=2$, linear convergence with $\varepsilon \in] 0,1[, C>0$

$$
f\left(x_{n+1}\right)-\inf f \leq \varepsilon\left(f\left(x_{n}\right)-\inf f\right) \text { and }\left\|x_{n}-x^{\dagger}\right\| \leq C \sqrt{\varepsilon}^{n},
$$

Exploiting the geometry: Convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then x_{n} converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:
(1) if $p=2$, linear convergence with $\varepsilon \in] 0,1[, C>0$

$$
f\left(x_{n+1}\right)-\inf f \leq \varepsilon\left(f\left(x_{n}\right)-\inf f\right) \text { and }\left\|x_{n}-x^{\dagger}\right\| \leq C \sqrt{\varepsilon}^{n},
$$

(2) if $p>2$, sublinear convergence with $C_{1}, C_{2}>0$

$$
f\left(x_{n}\right)-\inf f \leq C_{1} n^{\frac{-p}{p-2}} \text { and }\left\|x_{n}-x^{\dagger}\right\| \leq C_{2} n^{\frac{-1}{p-2}} .
$$

Exploiting the geometry: Convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by the Forward-Backward, and suppose

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then x_{n} converges strongly to a minimizer x^{\dagger} of f. Moreover, $\forall n \in \mathbb{N}$:
(1) if $p=2$, linear convergence with $\varepsilon \in] 0,1[, C>0$

$$
f\left(x_{n+1}\right)-\inf f \leq \varepsilon\left(f\left(x_{n}\right)-\inf f\right) \text { and }\left\|x_{n}-x^{\dagger}\right\| \leq C \sqrt{\varepsilon}^{n},
$$

(2) if $p>2$, sublinear convergence with $C_{1}, C_{2}>0$

$$
f\left(x_{n}\right)-\inf f \leq C_{1} n^{\frac{-p}{p-2}} \text { and }\left\|x_{n}-x^{\dagger}\right\| \leq C_{2} n^{\frac{-1}{p-2}} .
$$

NB: All the constants depend on $\left(L, \lambda, p, \gamma_{f, \Omega}, f\left(x^{0}\right)-\inf f\right)$.

Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then $p=2$ gives linear rates, $p>2$ sublinear rates.
Some remarks on the convergence result:

Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then $p=2$ gives linear rates, $p>2$ sublinear rates.
Some remarks on the convergence result:

- These rates are optimal (see $\left.f(x)=\|x\|^{p}\right)$.

Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then $p=2$ gives linear rates, $p>2$ sublinear rates.
Some remarks on the convergence result:

- These rates are optimal (see $f(x)=\|x\|^{p}$).
- Rates involve a generalized condition number $\kappa \propto L / \gamma_{f, \Omega}$. For $p=2$ there is $\varepsilon=\kappa /(\kappa+1)$.

Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then $p=2$ gives linear rates, $p>2$ sublinear rates.
Some remarks on the convergence result:

- These rates are optimal (see $f(x)=\|x\|^{p}$).
- Rates involve a generalized condition number $\kappa \propto L / \gamma_{f, \Omega}$. For $p=2$ there is $\varepsilon=\kappa /(\kappa+1)$.
- These results extends to the nonconvex setting.

Exploiting the geometry: convergence result

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Then $p=2$ gives linear rates, $p>2$ sublinear rates.
Some remarks on the convergence result:

- These rates are optimal (see $f(x)=\|x\|^{p}$).
- Rates involve a generalized condition number $\kappa \propto L / \gamma_{f, \Omega}$. For $p=2$ there is $\varepsilon=\kappa /(\kappa+1)$.
- These results extends to the nonconvex setting.
- These results extends to general first-order descent methods.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
$\exists(\delta, r) \in] 0,+\infty\left[{ }^{2}, f\right.$ is p-conditioned on $\Omega:=B(\bar{x}, \delta) \cap[f-\inf \leq r]$.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
$\exists(\delta, r) \in] 0,+\infty\left[{ }^{2}, f\right.$ is p-conditioned on $\Omega:=B(\bar{x}, \delta) \cap[f-\inf \leq r]$. Fejer + descent $\Rightarrow \exists N \in \mathbb{N}, \forall n \geq N, \quad x^{n} \in \Omega \Rightarrow$ Local rates.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
$\forall(\delta, r) \in] 0,+\infty\left[{ }^{2}, f\right.$ is p-conditioned on $\Omega:=B(\bar{x}, \delta) \cap[f-\inf \leq r]$.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
$\forall(\delta, r) \in] 0,+\infty\left[{ }^{2}, f\right.$ is p-conditioned on $\Omega:=B(\bar{x}, \delta) \cap[f-\inf \leq r]$. Fejer + descent $\Rightarrow \forall n \geq 0, x^{n} \in \Omega, \Rightarrow$ Global rates.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry $\Omega: f(x)=\|A x-y\|^{2}$.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry $\Omega: f(x)=\|A x-y\|^{2}$.
- If $\operatorname{Im} A$ not closed, Haraux and Jendoubi show that no conditioning hold on $B(\bar{x}, \delta)$.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry $\Omega: f(x)=\|A x-y\|^{2}$.
- If $\operatorname{Im} A$ not closed, Haraux and Jendoubi show that no conditioning hold on $B(\bar{x}, \delta)$.
- We prove that conditioning holds on "Sobolev" spaces.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry $\Omega: f(x)=\|A x-y\|^{2}$.
- We can restrict to low-dimensional sets.

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry $\Omega: f(x)=\|A x-y\|^{2}$.
- We can restrict to low-dimensional sets.

If $f=g+h$ with h smooth and g partially smooth + QC, then $\exists N \in N, \forall n \geq N, x^{n} \in \mathcal{M}$ (identification of active manifold)

On the localization/geometry trade-off

Theorem (G., Rosasco, Villa, 2016) \& (Frankel, G., Peypouquet, 2014)

- (Localization) $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$,
- (Geometry) f is p-conditioned on Ω.

Localization hypothesis seems a trick. And why general $\Omega \subset X$?

- Clarify the local vs global rates.
- Some functions have nonlocal geometry Ω : $f(x)=\|A x-y\|^{2}$.
- We can restrict to low-dimensional sets.

If $f=g+h$ with h smooth and g partially smooth + QC, then $\exists N \in N, \forall n \geq N, x^{n} \in \mathcal{M}$ (identification of active manifold) \rightarrow conditioning on \mathcal{M} is enough, no need for strong convexity.

Updated results

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p=2$	linear	linear
geometry, $1<p<2$	superlinear	superlinear
geometry, $p=1$	finite	finite

Updated results

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p=2$	linear	linear
geometry, $1<p<2$	superlinear	superlinear
geometry, $p=1$	finite	finite

- We have a spectra covering "almost" all convex functions in finite dimensions ${ }^{1}$.

[^5]
Updated results

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p=2$	linear	linear
geometry, $1<p<2$	superlinear	superlinear
geometry, $p=1$	finite	finite

- We have a spectra covering "almost" all convex functions in finite dimensions ${ }^{1}$.
- The hypothesis to get linear rates is minimal

[^6]
Updated results

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
$\operatorname{argmin} f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p=2$	linear	linear
geometry, $1<p<2$	superlinear	superlinear
geometry, $p=1$	finite	finite

Proposition

If linear rates hold on Ω :

$$
(\exists \varepsilon \in] 0,1[)(\forall x \in \Omega) \quad \operatorname{dist}(F B(x), \operatorname{argmin} f) \leq \varepsilon \operatorname{dist}(x, \operatorname{argmin} f),
$$

then f is 2 -conditioned on Ω.

Updated results

function	values	iterates
$\operatorname{argmin} f=\emptyset$	$o(1)$	diverge
argmin $f \neq \emptyset$	$o\left(n^{-1}\right)$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p=2$	linear	linear
geometry, $1<p<2$	superlinear	superlinear
geometry, $p=1$	finite	finite

- We have a spectra covering "almost" all convex functions in finite dimensions ${ }^{1}$.
- The hypothesis to get linear rates is minimal
- Up to now, the infinite dimensional setting is less understood.

[^7]
Contents

(1) Classic theory

(2) Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry
(3) Inverse problems in Hilbert spaces
- Linear inverse problems
- Sparse inverse problems

Least squares: $f(x)=\frac{1}{2}\|A x-y\|^{2}$

Assume that $R(A)$ is not closed, and $y \in \operatorname{dom} A^{\dagger}$.
The FB method becomes $x_{n+1}=x_{n}-\lambda A^{*}\left(A x_{n}-y\right), x_{0}=0$.

Least squares: $f(x)=\frac{1}{2}\|A x-y\|^{2}$

Assume that $R(A)$ is not closed, and $y \in \operatorname{dom} A^{\dagger}$.
The FB method becomes $x_{n+1}=x_{n}-\lambda A^{*}\left(A x_{n}-y\right), x_{0}=0$.
x_{n} converges to $x^{\dagger}:=A^{\dagger} y$. But how fast?
\rightarrow Old answer: it depends on the regularity of x^{\dagger}.

Least squares: $f(x)=\frac{1}{2}\|A x-y\|^{2}$

Assume that $R(A)$ is not closed, and $y \in \operatorname{dom} A^{\dagger}$.
The FB method becomes $x_{n+1}=x_{n}-\lambda A^{*}\left(A x_{n}-y\right), x_{0}=0$.
x_{n} converges to $x^{\dagger}:=A^{\dagger} y$. But how fast?
\rightarrow Old answer: it depends on the regularity of x^{\dagger}.
In inverse problems, the spaces $R\left(A^{*} A^{\mu}\right)$ play the role of Sobolev in L^{2}.

Example: Sobolev regularity

If $X=Y=L^{2}([0,2 \pi])$ and A is the integration operator, then

$$
R\left(A^{*} A^{\mu}\right)=H^{2 \mu}([0,2 \pi])
$$

Least squares: Convergence analysis

Theorem: Geometry on Sobolev spaces

The least squares f is p-conditioned on each affine space $x^{\dagger}+R\left(A^{*} A^{\mu}\right)$, with the exponent $p=2+\mu^{-1}$.

Fact: if $x^{\dagger} \in R\left(A^{*} A^{\mu}\right)$ and $x_{0}=0$, then $\left(x_{n}\right)_{n \in \mathbb{N}} \subset x^{\dagger}+R\left(A^{*} A^{\mu}\right)$.

Theorem: Convergence for Landweber's algorithm

If $x_{0}=0$, and $x^{\dagger} \in R\left(A^{*} A^{\mu}\right)$, then the convergence is sublinear:

$$
f\left(x_{n}\right)-\inf f=O\left(n^{-(1+2 \mu)}\right) \text { and }\left\|x_{n}-x^{\dagger}\right\|=O\left(n^{-\mu}\right)
$$

NB: the exponent $p=2+\mu^{-1}$ and the rates are tight.

Least squares: what if argmin $\|A x-y\|^{2}=\emptyset$?

It might be that $x^{\dagger}=A^{\dagger} y$ doesn't exist...

Least squares: what if argmin $\|A x-y\|^{2}=\emptyset$?

It might be that $x^{\dagger}=A^{\dagger} y$ doesn't exist...
Typically in learning we look for a function in $L^{2}(\mathcal{X} \times \mathcal{Y}, \rho)$ But in practice we work in a RKHS $X \subset L^{2}$

Least squares: what if argmin $\|A x-y\|^{2}=\emptyset$?

It might be that $x^{\dagger}=A^{\dagger} y$ doesn't exist...
Typically in learning we look for a function in $L^{2}(\mathcal{X} \times \mathcal{Y}, \rho)$
But in practice we work in a RKHS $X \subset L^{2}$
Even if f has no minimizers, we still want to estimate $f\left(x^{n}\right)-\inf f \rightarrow 0$ It will depend on how far the solution is from X.

Least squares: what if argmin $\|A x-y\|^{2}=\emptyset$?

It might be that $x^{\dagger}=A^{\dagger} y$ doesn't exist...
Typically in learning we look for a function in $L^{2}(\mathcal{X} \times \mathcal{Y}, \rho)$
But in practice we work in a RKHS $X \subset L^{2}$
Even if f has no minimizers, we still want to estimate $f\left(x^{n}\right)-\inf f \rightarrow 0$ It will depend on how far the solution is from X.
We look at how regular is $y^{\dagger}:=\operatorname{proj}(y, \overline{\operatorname{Im} A})$ within $\overline{\operatorname{Im} A} \subset Y$.

Least squares but no minimizers: Convergence analysis

Theorem: Geometry on Sobolev spaces (w.r.t. data space Y)
The least squares f is " p-conditioned" on each affine space

$$
A^{-1}\left(y^{\dagger}+R\left(A A^{* \nu}\right)\right), \nu>0
$$

with the exponent $p=2+(\nu-1 / 2)^{-1}$.
Fact: if $\nu<1 / 2$ then $p<0$!! f behaves like $\frac{1}{\text { tp }}$.
Theorem: Convergence for Landweber's algorithm
If $x_{0}=0$, and $y^{\dagger} \in R\left(A A^{* \nu}\right)$, then the convergence is sublinear:

$$
f\left(x_{n}\right)-\inf f=O\left(n^{-2 \nu}\right) .
$$

Updated results

Assume f to be convex and $\left(x_{n}\right)_{n \in \mathbb{N}}$ be generated by a first-order descent method.

function	values	iterates
argmin $f=\emptyset$	$o(1)$	diverge
geometry, $p<0$	$O\left(n^{\frac{-p}{p-2}}\right)$	diverge
argmin $f \neq \emptyset$	$O\left(n^{-1}\right)$	weak convergence
geometry, $p>2$	$O\left(n^{\frac{-p}{p-2}}\right)$	$O\left(n^{\frac{-1}{p-2}}\right)$
geometry, $p=2$	linear	linear
geometry, $1<p<2$	superlinear	superlinear
geometry, $p=1$	finite	finite

Contents

(1) Classic theory
(2) Better rates with the help of geometry

- Identifying the geometry of a function
- Exploiting the geometry
(3) Inverse problems in Hilbert spaces
- Linear inverse problems
- Sparse inverse problems

Lasso in Hilbert spaces

Consider the Lasso in $\ell^{2}(\mathbb{N})$

$$
f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}
$$

How fast do converge ISTA? $O(1 / n)$? linearly?

Lasso in Hilbert spaces

Consider the Lasso in $\ell^{2}(\mathbb{N})$

$$
f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}
$$

How fast do converge ISTA? $O(1 / n)$? linearly?

- linear rates if A is injective on finite supports
- linear rates if qualification condition holds

Lasso in Hilbert spaces

Consider the Lasso in $\ell^{2}(\mathbb{N})$

$$
f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}
$$

How fast do converge ISTA? $O(1 / n)$? linearly?

- linear rates if A is injective on finite supports
- linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists Ω such that $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$ and f is 2 -conditioned on Ω. So ISTA always converge linearly.

Consider the Lasso in $\ell^{2}(\mathbb{N})$

$$
f(x)=\alpha\|x\|_{1}+\frac{1}{2}\|A x-y\|^{2}
$$

How fast do converge ISTA? $O(1 / n)$? linearly?

- linear rates if A is injective on finite supports
- linear rates if qualification condition holds

Theorem (G., Rosasco, Villa - 2017)

There exists Ω such that $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$ and f is 2 -conditioned on Ω. So ISTA always converge linearly.

Similar result by replacing $\|\cdot\|_{1}$ with $\|\cdot\|_{1}+\|\cdot\|_{p}^{p}$.

Conclusion

If you had to remember ONE thing

You have a descent-related (dissipative?) algorithm?
Strong convexity gives you strong convergence and better rates?
Try to use the 2-conditioning:

$$
\gamma \operatorname{dist}(x, \operatorname{argmin} f)^{2} \leq f(x)-\inf f
$$

\longrightarrow It should give the same results than strong convexity
\longrightarrow It applies to a way more general class of functions (actually super sharp for linear rates)

Conclusion/Discussion

- Structural results allow a practical identification of geometry.

Conclusion/Discussion

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.

Conclusion/Discussion

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w)=\sum \ell\left(\left\langle x_{i}, w\right\rangle-y_{i}\right)$.

Conclusion/Discussion

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w)=\sum \ell\left(\left\langle x_{i}, w\right\rangle-y_{i}\right)$.
- Descent methods very well understood. Holds for general first-order descent methods
(1) (descent) $a\left\|x_{n+1}-x_{n}\right\|^{2} \leq f\left(x_{n}\right)-f\left(x_{n+1}\right)$
(2) (1st order) $b\left\|\partial f\left(x_{n+1}\right)\right\|_{-} \leq\left\|x_{n+1}-x_{n}\right\|$

Allows even more structured methods (decomposition by blocs), or variants (variable metric, inexact computations)

- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w)=\sum \ell\left(\left\langle x_{i}, w\right\rangle-y_{i}\right)$.
- Descent methods very well understood. Holds for general first-order descent methods
- Recently: application to stochastic gradient methods.
- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w)=\sum \ell\left(\left\langle x_{i}, w\right\rangle-y_{i}\right)$.
- Descent methods very well understood. Holds for general first-order descent methods
- Recently: application to stochastic gradient methods.
- Geometry is a powerful tool not only for rates, but also for regularization! (see Silvia's talk)
- Structural results allow a practical identification of geometry.
- Geometry sheds a new light on a priori unrelated results.
- Quantitative characterization of the geometry in the nonconvex case is an active topic. E.g.: $f(w)=\sum \ell\left(\left\langle x_{i}, w\right\rangle-y_{i}\right)$.
- Descent methods very well understood. Holds for general first-order descent methods
- Recently: application to stochastic gradient methods.
- Geometry is a powerful tool not only for rates, but also for regularization! (see Silvia's talk)
- Can inertial methods benefit from this analysis? Are they adaptive?

Thanks for your attention!

[^0]: ${ }^{1}$ Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012)
 ${ }^{2}$ Daubechies, Defrise, DeMol (2004)
 ${ }^{3}$ Bredies, Lorenz (2008)
 ${ }^{4}$ End of this talk

[^1]: ${ }^{1}$ Bolte, Nguyen, Peypouquet, Suter (2015), based on Li (2012)
 ${ }^{2}$ Daubechies, Defrise, DeMol (2004)
 ${ }^{3}$ Bredies, Lorenz (2008)
 ${ }^{4}$ End of this talk

[^2]: ${ }^{1}$ Bolte, Nguyen, Peypouquet, Suter, 2015 - Garrigos, Rosasco , Villa, 2016.

[^3]: ${ }^{1}$ Bolte, Nguyen, Peypouquet, Suter, 2015 - Garrigos, Rosasco , Villa, 2016.

[^4]: ${ }^{1}$ Yang, 2009 + Li, 2012
 ${ }^{2}$ Bolte, Daniilidis, Lewis, Shiota, 2007

[^5]: ${ }^{1}$ Bolte, Daniilidis, Ley, Mazet - 2010

[^6]: ${ }^{1}$ Bolte, Daniilidis, Ley, Mazet - 2010

[^7]: ${ }^{1}$ Bolte, Daniilidis, Ley, Mazet - 2010

