
Stochastic Optimization
for Black-Box Variational Inference

Journées annuelles du GdR MOA ‐ Université Perpignan Via Domitia
Guillaume Garrigos

October 2023

1 / 22



A work in collaboration with

Justin Domke Robert M. Gower
University of Massachusetts Flatiron Institute

2 / 22



I : Introduction

Introduction 3 / 22



Variational Inference
We have a distribution p(x, z), where x is explicit data and z is latent variable

We want to estimate p(z|x) with a simple family Q : p(·|x) ∼ q ∈ Q
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We have a distribution p(x, z), where x is explicit data and z is latent variable

We want to estimate p(z|x) with a simple family Q : p(·|x) ∼ q ∈ Q

min
q∈Q

KL(q || p(·|x)) =
∫

q(z) ln q(z)
p(z|w)dz = Ez ln q(z)

p(z|w)

Equivalently

min
q∈Q

Ez ln q(z)− Ez ln p(x, z) ﴾VI﴿
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Variational Inference : Gaussian Family

min
q∈Q

Ez ln q(z)− Ez ln p(x, z) ﴾VI﴿

Assumption ﴾Gaussian Family﴿
We assume that Q = {qw | w ∈ W+}, with
• W = Rd ×Md whereMd = T d ﴾lower triangular﴿ or Sd ﴾symmetric﴿
• W+ = {(m,C) ∈ W | C ≻ 0}
• qw(z) = N (z|m,CC⊤)

Introduction 5 / 22



Variational Inference : Gaussian Family

min
w∈W+

Ez ln qw(z)− Ez ln p(x, z) ﴾VI﴿

Assumption ﴾Gaussian Family﴿
We assume that Q = {qw | w ∈ W+}, with
• W = Rd ×Md whereMd = T d ﴾lower triangular﴿ or Sd ﴾symmetric﴿
• W+ = {(m,C) ∈ W | C ≻ 0}
• qw(z) = N (z|m,CC⊤)

Introduction 5 / 22



II : Structural properties

Structural properties 6 / 22



Properties of the entropy h
Proposition ﴾Convexity of the entropy ‐ Domke 2020﴿
Let h(w) = Ez ln qw(z) + δW+(w).
1. h(w) = − ln detC if C ≻ 0, +∞ otherwise
2. h is proper lower semi‐continuous convex overW = Rd ×Md

3. proxγh(m,C) = (m, Ĉ) with Ĉii ← 1
2
(Cii +

√
C2
ii + 4γ), ifMd = T d

Proposition ﴾Smoothness of the entropy ‐ Domke 2020﴿

1. ∇h is L‐Lipschitz overW+
L = {(m,C) ∈ W+ | σmin(C) ě 1√

L}
2. projW+

L
(m,C) can be computed by doing a SVD on C, ifMd = Sd
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Properties of the free energy ℓ
Proposition ﴾Convexity and smoothness of the energy ‐ Domke 2020﴿
Let ℓ(w) = −Ez ln p(x, z).
1. If − ln p(·, x) is convex then ℓ too
2. If − ln p(·, x) is µ‐strongly convex then ℓ too
3. If − ln p(·, x) is L‐smooth, then ℓ too
4. argmin(h+ ℓ) ⊂ W+

L = {(m,C) ∈ W+ | σmin(C) ě 1√
L}
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1. If − ln p(·, x) is convex then ℓ too
2. If − ln p(·, x) is µ‐strongly convex then ℓ too
3. If − ln p(·, x) is L‐smooth, then ℓ too
4. argmin(h+ ℓ) ⊂ W+

L = {(m,C) ∈ W+ | σmin(C) ě 1√
L}

Assumption ﴾log‐concave and smooth target﴿
We assume that − ln p(·, x) is convex and L‐smooth
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Properties of the free energy ℓ
Assumption ﴾log‐concave and smooth target﴿
We assume that − ln p(·, x) is convex and L‐smooth

Example ﴾Models with log‐concave and smooth target﴿

1. Bayesian linear regression
2. Logistic regression
3. Hierarchical logistic regression
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Properties of the problem

min
w∈W+

Ez ln qw(z)− Ez ln p(x, z) = h(w) + ℓ(w) ﴾VI﴿

We can consider two approaches:

1. h is prox‐friendly, and ℓ is smooth : we do a proximal stochastic
gradient method
◦ encode withMd = T d so that proxh costs O(d) operations

2. f = h+ ℓ is smooth overW+
L : we do a projected stochastic gradient

method
◦ encode withMd = Sd so that projW+

L
is tractable O(d3)
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III : Stochastic algorithms
1 : Classical theory for SGD
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To minimize f(w) = Ez f(w, z), the SGD algorithm writes

wt+1 = wt − γtgt, Ez
[
gt
]
= ∇f(wt)
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wt+1 = wt − γtgt, Ez
[
gt
]
= ∇f(wt)

Typical results in the convex setting are :

• t− 1
2 convergence when γt ↓ 0 : E [f(wt)− inf f] = O

(
1√
t

)
• ε−2 complexity when γt ≡ γ : E [f(wt)− inf f] = O

(
1
γt + γσ2

)
Bonus : if no variance ﴾interpolation holds﴿ then we get better rates
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To minimize f(w) = Ez f(w, z), the SGD algorithm writes

wt+1 = wt − γtgt, Ez
[
gt
]
= ∇f(wt)

Typical results in the convex setting are :

• t− 1
2 convergence when γt ↓ 0 : E [f(wt)− inf f] = O

(
1√
t

)
• ε−2 complexity when γt ≡ γ : E [f(wt)− inf f] = O

(
1
γt + γσ2

)
Usually require assumptions on f ﴾regularity﴿ and gt ﴾variance control﴿:

• f is Lipschitz § or ∇f is Lipschitz § or f(·, z) is uniformly smooth §
• Ez [∥gt∥2] ď C or C∥∇f(wt)∥2 §
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2 convergence when γt ↓ 0 : E [f(wt)− inf f] = O

(
1√
t

)
• ε−2 complexity when γt ≡ γ : E [f(wt)− inf f] = O

(
1
γt + γσ2

)
Usually require assumptions on f ﴾regularity﴿ and gt ﴾variance control﴿:

• f is Lipschitz § or ∇f is Lipschitz § or f(·, z) is uniformly smooth §
• Ez [∥gt∥2] ď C or C∥∇f(wt)∥2 §

We need new optimization theory for the niche properties verified by VI
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III : Stochastic algorithms
2 : Proximal Stochastic Gradient method for VI
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)

The Proximal Stochastic Gradient Descent method writes as:

wt+1 = proxγth (w
t − γtgt) , E [gt] = ∇ℓ(wt)
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)

The Proximal Stochastic Gradient Descent method writes as:

wt+1 = proxγth (w
t − γtgt) , E [gt] = ∇ℓ(wt)

Lemma ﴾The energy estimator﴿
If u ∼ N (0, I) and gtenergy := −∇w ln p(x,Ctu+mt), then

Eu
[
gtenergy

]
= ∇ℓ(wt) and Eu

[
∥gtenergy∥2

]
ď A∥w− w∗∥2 + B

The noise bound O(∥w−w∗∥2 + 1) is new, but we can exploit it to get rates
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)

The Proximal Stochastic Gradient Descent method writes as:

wt+1 = proxγth (w
t − γtgt) , E [gt] = ∇ℓ(wt)

Theorem ﴾Rates for solving VI﴿
Let wt be generated by the above method, with the energy estimator
gtenergy.

1. for a suitable γt ↓ 0, we have E [f(wt)− inf f] = O
(

1√
t

)
2. for a constant γt ≡ 1

LT , we have E
[
f(wT)− inf f

]
= O

(
1√
T

)
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)

The Proximal Stochastic Gradient Descent method writes as:

wt+1 = proxγth (w
t − γtgt) , E [gt] = ∇ℓ(wt)

Theorem ﴾General optimization result﴿
Let ℓ be convex and L‐smooth, let h be convex. Assume the estimator is
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The Proximal Stochastic Gradient Descent method writes as:

wt+1 = proxγth (w
t − γtgt) , E [gt] = ∇ℓ(wt)

Theorem ﴾General optimization result﴿
Let ℓ be µ‐convex and L‐smooth, let h be convex. Assume the estimator
is quadratically bounded : E [∥gt∥2] ď A∥wt − w∗∥2 + B. If γ ď 1

L then

E
[
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≃ O
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III : Stochastic algorithms
3 : Projected Stochastic Gradient for VI
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)
ℓ is gloablly L‐smooth, and h too overW+

L = {w ∈ W+ | σmin(C)2 ě 1/L}

Our Projected Stochastic Gradient Descent method writes as:

wt+1 = projW+
L
(wt − γtgt) , E [gt] = ∇(ℓ+ h)(wt)
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Our Projected Stochastic Gradient Descent method writes as:

wt+1 = projW+
L
(wt − γtgt) , E [gt] = ∇(ℓ+ h)(wt)

Lemma ﴾The entropy estimator﴿
If u ∼ N (0, I) and gtentropy := gtenergy +∇h(w), then

Eu
[
gtentropy

]
= ∇f(wt) and Eu
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∥gtentropy∥2

]
ď A∥w− w∗∥2 + B
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Theorem ﴾Rates for VI﴿
Let wt be generated by the above method, with the entropy estimator
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LT ﴿, we have
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T
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)
ℓ is gloablly L‐smooth, and h too overW+

L = {w ∈ W+ | σmin(C)2 ě 1/L}

Our Projected Stochastic Gradient Descent method writes as:

wt+1 = projW+
L
(wt − γtgt) , E [gt] = ∇(ℓ+ h)(wt)

Lemma ﴾The Stick The Landing ﴾STL﴿ estimator﴿
If u ∼ N (0, I) and gtSTL := gtenergy +∇w ln qv(Ctu+mt) with v = wt, then

Eu
[
gtSTL

]
= ∇f(wt) and Eu

[
∥gtSTL∥2

]
ď A∥w− w∗∥2 + B

where B = 0 if the target distribution p(·|x) is a Gaussian.
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Remember h(w) = Ez ln qw(z) + δW+(w), ℓ(w) = −Ez ln p(x, z)
ℓ is gloablly L‐smooth, and h too overW+

L = {w ∈ W+ | σmin(C)2 ě 1/L}

Our Projected Stochastic Gradient Descent method writes as:

wt+1 = projW+
L
(wt − γtgt) , E [gt] = ∇(ℓ+ h)(wt)

Theorem ﴾Exponential rates for VI with Gaussian target﴿
Let wt be generated by the above method, with the STL estimator gtSTL.
Assume that the target p is Gaussian. For a suitable γt, we have

E
[
f(wT)− inf f

]
= O

(
θT
)
, θ ∈ [0, 1).
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IV : Conclusion

Conclusion 20 / 22



Conclusion and perspectives
• Black‐box VI problems have very specific properties
◦ estimator with quadratic noise A∥w− w∗∥2 + B
◦ non‐global smoothnessW+

L

• Required a new analysis of SGD
• Estimate how well STL works when target is Gaussian
◦ What if the target is almost Gaussian?

• In practice people do SGD without projection onW+
L : is this needed at

all?
• Can we get results without convexity but Polyak‐Łojasiewicz? ﴾we tried﴿
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Thank you for your attention !
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