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Variational Inference

We have a distribution p(x, z), where x is explicit data and z is latent variable

We want to estimate p(z|x) with a simple family Q : p(:|x) ~ g € Q
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Variational Inference

We have a distribution p(x, z), where x is explicit data and z is latent variable

We want to estimate p(z|x) with a simple family Q : p(:|x) ~ g € Q

min KL | p() = [ q@)in T2 dz 5, n 4

Equivalently

min E, Ing(z) — E, Inp(x,2) (V1)
qeQ
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Variational Inference : Gaussian Family

min E, Ing(z) — E; Inp(x,2) (V1)
qeQ

Assumption (Gaussian Family)
We assume that Q = {q. | w € W}, with
o W =R x M?%where M? = T7 (lower triangular) or S¢ (symmetric)
e Wt ={(m,C)eW|C>0}
® quw(z) = N(zJm,CCT)
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Properties of the entropy h

Proposition (Convexity of the entropy - Domke 2020)
Let h(w) = E; Inqu(z) + S+ (w).
1. h(w) = —Indet C if C > 0, 400 otherwise
2. his proper lower semi-continuous convex over W = R x M¢
3. prox_,(m, C) = (m, C) with Cg « (Ci + /C2 + 47), if M7 = T4

Proposition (Smoothness of the entropy - Domke 2020)

1. Vhis L-Lipschitz over W," = {(m,C) € W' | omin(C) = %}
2. proj,y+(m, C) can be computed by doing a SVD on C, if M? = 59
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Properties of the free energy /

Proposition (Convexity and smoothness of the energy - Domke 2020)

Let /(w) = —E, Inp(x, z).

1. If —Inp(+,x) is convex then ¢ too

2. If —Inp(-,x) is u-strongly convex then ¢ too

3. If —Inp(-,x) is L-smooth, then ¢ too

4. argmin(h +£) C W} = {(m,C) e W* | gmin(C) > 7}
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Properties of the free energy /

Proposition (Convexity and smoothness of the energy - Domke 2020)

Let /(w) = —E, Inp(x, z).

1. If —Inp(+,x) is convex then ¢ too

2. 1f —Inp(-,x) is p-strongly convex then ¢ too

3. If —Inp(-,x) is L-smooth, then ¢ too

4. argmin(h +£) C W} = {(m,C) e W* | gmin(C) > 7}

Assumption (log-concave and smooth target)

We assume that — Inp(-, x) is convex and L-smooth
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Properties of the free energy /

Assumption (log-concave and smooth target)

We assume that — Inp(+, x) is convex and L-smooth

Example (Models with log-concave and smooth target)

1. Bayesian linear regression
2. Logistic regression

3. Hierarchical logistic regression
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Properties of the problem

min E, Ingy(z) — E, Inp(x,z) = h(w) + {(w) (V1)

wewt

We can consider two approaches:
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Properties of the problem

min E, Ingy(z) — E, Inp(x,z) = h(w) + {(w) (V1)

wewt

We can consider two approaches:

1. his prox-friendly, and ¢ is smooth : we do a proximal stochastic
gradient method

o encode with M9 = T9 so that prox, costs O(d) operations

2. f=h+ (is smooth over W," : we do a projected stochastic gradient
method

© encode with M9 = &9 so that pI’OJW+ is tractable O(d®)

Structural properties 10/ 22
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1l : Stochastic algorithms
1 : Classical theory for SGD
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To minimize f(w) = E, f(w, z), the SGD algorithm writes

W = W =g, [gf] = VAW
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To minimize f(w) = E, f(w, z), the SGD algorithm writes
W =w' =g, E[g] = VAW)
Typical results in the convex setting are :
e t~2 convergence when ~ | 0: E [f(w!) — inff] = O (\%)

e =2 complexity when v = v : E[f(w') —inffl=0 (Wit + 702)
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To minimize f(w) = E, f(w, z), the SGD algorithm writes
W =w' =g, E[g] = VAW)
Typical results in the convex setting are :
e t~2 convergence when ~; | 0: E[f(w!) —inffl = O (\%)
e =2 complexity when v = v: E[f(w!) —inff] = O (%t - 702)

Bonus : if no variance (interpolation holds) then we get better rates
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To minimize f(w) = E, f(w, z), the SGD algorithm writes
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To minimize f(w) = E, f(w, z), the SGD algorithm writes
W =w' =g, E[g] = VAW)
Typical results in the convex setting are :
e t~2 convergence when ~; | 0: E[f(w!) —inffl = O (\%)
e =2 complexity when v = v: E[f(w!) —inff] = O (%t - 702)
Usually require assumptions on f (regularity) and g* (variance control):

e fis Lipschitz © or Vfis Lipschitz © or f(-, z) is uniformly smooth ©
* K, [lglI*] < Cor Cl|VAW)|* ©

We need new optimization theory for the niche properties verified by VI
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1l : Stochastic algorithms
2 : Proximal Stochastic Gradient method for VI
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)

The Proximal Stochastic Gradient Descent method writes as:

wih = prox , (W' —g"), E[g'] = Vi(w)
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)

The Proximal Stochastic Gradient Descent method writes as:

wih = prox , (W' —g"), E[g'] = Vi(w)

Lemma (The energy estimator)

If u~N(0,1) and Ginergy = —Vw Inp(x, C'u +m"), then
Ey [gfenergy} = Vﬁ(wt) and Ey [“gttenergy”ﬂ = A”W_ W*||2 + B

The noise bound O(||lw — w*||* + 1) is new, but we can exploit it to get rates

Stochastic algorithms Proximal Stochastic Gradient method for VI

17/ 22



Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)

The Proximal Stochastic Gradient Descent method writes as:

witt = prox,, (W' = yg"), Blg] = V(W)

Theorem (Rates for solving VI)

Let w! be generated by the above method, with the energy estimator

ggnergy'
1. for a suitable ~; | 0, we have E [f(w') —inffl= 0 (%)

2. for a constant : = -, we have E [f(w") —inff] = O (%r)
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Theorem (General optimization result)

Let ¢ be convex and L-smooth, let h be convex. Assume the estimator is
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)

The Proximal Stochastic Gradient Descent method writes as:
Wt = prox_, (W' —ng"), E[g'] = V(W)

Theorem (General optimization result)

Let ¢ be ;i-convex and L-smooth, let h be convex. Assume the estimator
is quadratically bounded : E [||g°||*] < A|w' — w*||?> + B. If v < { then

E [f(w!) — inff] ~ O (A6, + B)
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1l : Stochastic algorithms
3 : Projected Stochastic Gradient for VI
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)
¢ is gloablly L-smooth, and h too over W' = {w € W | o0min(C)? > 1/L}

Our Projected Stochastic Gradient Descent method writes as:

WL = projy, (W — %), E g = V(€ + h)(w)
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)
¢ is gloablly L-smooth, and h too over W;" = {w € W' | oin(C)? = 1/L}

Our Projected Stochastic Gradient Descent method writes as:
W = proj, (W' — g") . E[g] = V(£ + h)(w)

Lemma (The entropy estimator)

If u~ N(0,1) and Giniropy 1= Jenergy +— V1(w), then
Ey [Gentopy] = VAW') and Ey [[|Gentropyll’] < Allw —w*||* + B
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)
¢ is gloablly L-smooth, and h too over W;" = {w € W' | oin(C)? = 1/L}

Our Projected Stochastic Gradient Descent method writes as:

W = projy (W' —yg'), Blg] = V(£ + h)(w)

Theorem (General optimization result)

Let ¢ + h be convex and differentiable on W;'. Assume the estimator is
quadratically bounded : E [||g'[|?] < A|[w' — w*||? + B. If v < { then
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)
¢ is gloablly L-smooth, and h too over W;" = {w € W' | oin(C)? = 1/L}

Our Projected Stochastic Gradient Descent method writes as:

W = projy (W' —yg'), Blg] = V(£ + h)(w)

Theorem (General optimization result)

Let ¢ + h be /.-convex and differentiable on W,". Assume the estimator is
quadratically bounded : E [||g'[|?] < A|[w' — w*||? + B. If v < { then

E [f(w') —inff] ~ O (AQ:/ +B7)
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)
¢ is gloablly L-smooth, and h too over W;" = {w € W' | oin(C)? = 1/L}

Our Projected Stochastic Gradient Descent method writes as:

W = projy (W' —yg'), Blg] = V(£ + h)(w)

Lemma (The Stick The Landing (STL) estimator)
If u~ N(0,/) and g&r = Ginergy + Vi In Gy (C'u + m") with v = w/, then
E, [gsn ] = VW) and E, [|lgé[I*] < Allw —w*|*+B

where B = 0 if the target distribution p(-|x) is a Gaussian.
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Remember h(w) = E; Inqy(z) + d+(w), £(w) = —E, Inp(x,2)
¢ is gloablly L-smooth, and h too over W;" = {w € W' | oin(C)? = 1/L}

Our Projected Stochastic Gradient Descent method writes as:

W = projy (W' —yg'), Blg] = V(£ + h)(w)

Theorem (Exponential rates for VI with Gaussian target)

Let w' be generated by the above method, with the STL estimator g;,.
Assume that the target p is Gaussian. For a suitable 7, we have

E [fw') —inffl =0 (6"), 6€[0,1).
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Conclusion and perspectives

e Black-box VI problems have very specific properties

o estimator with quadratic noise A|jw — w*||> + B
© non-global smoothness W,"

Required a new analysis of SGD

Estimate how well STL works when target is Gaussian

© What if the target is almost Gaussian?

® In practice people do SGD without projection on W, : is this needed at
all?
e Can we get results without convexity but Polyak-tojasiewicz? (we tried)
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Thank you for your attention !
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